Реферат: Основные характеристики ЭВМ

• Средние ЭВМ, предназначенные в первую очередь для работы в финансовых структурах (ЭВМ типа AS/400 (AdvancedPortableModel 3) — «бизнес-компьютеры», 64-разрядные). В этих маши­нах особое внимание уделяется сохранению и безопасности дан­ных, программной совместимости и т.д. Используются в качестве серверов локальных сетей и сетей корпораций, успешно конкури­руют с многопроцессорными серверами других фирм.

• Компьютеры на платформе микросхем фирмы Intel. IBM-совмес­тимые компьютеры этого класса составляют примерно 50% рын­ка всей компьютерной техники. Более половины их поступает в сферу малого бизнеса. Несмотря на столь внушительный объем выпуска персональных компьютеров этой платформы, фирма IBM проводит большие исследования и развивает собственную альтер­нативную платформу, получившую название PowerPC. Это направление, по мнению фирмы, позволило бы значительно улучшить структуру аппаратных средств ПК, а значит, и эффективность их применения. Однако новые модели этой платформы пока не вы­держивают конкуренции с IBMPC. Немаловажным здесь является и неразвитость рынка программного обеспечения, поэтому у массового пользователя это направление не Находит спроса, и доля компьютеров с процессорами PowerPC пока еще незначительна.

Кроме перечисленных типов вычислительной техники, необходимо отметить класс вычислительных систем, получивший название суперЭВМ. С развитием науки и техники постоянно выдвигаются новые крупномасштабные задачи, требующие выполнения больших объемов вычислений. Особенно эффективно применение суперЭВМ при решении задач проектирования, в которых натурные эксперименты оказываются дорогостоящими, недоступными или практически неосуществимыми. В этом случае ЭВМ позволяет методами численного моделирования получить результаты вычислительных экспери­ментов, обеспечивая приемлемое время и точность решения, т.е. ре­шающим условием необходимости разработки и применения подоб­ных ЭВМ является экономический показатель «производительность/ стоимость». СуперЭВМ позволяют по сравнению с другими типами машин точнее, быстрее и качественнее решать масштабные задачи, обеспечивая необходимый приоритет в разработках перспективной вы­числительной техники. Дальнейшее развитие суперЭВМ связывается с использованием направления массового параллелизма, при котором одновременно могут работать сотни и даже тысячи процессоров. Об­разцы таких машин уже выпускаются несколькими фирмами: nCube (гиперкубические ЭВМ), ConnectionMachine, MassPar, NCR/Teradata, KSR, IBMRS/6000, MPP и др.

На рубеже тысячелетий фирма IBM объявила о разработке в рам­ках ANSI (стратегической компьютерной инициативы) новой супер­ЭВМ, которая будет содержать более миллиона микропроцессоров типа PentiumIII (1020); по расчетам она должна иметь быстродействие 1015 операций в секунду.

Необходимо отметить и еще один класс наиболее массовых средств ЭВТ — встраиваемые микропроцессоры. Успехи микроэлектроники позволяют создавать миниатюрные вычислительные устройства, вплоть до однокристальных ЭВМ. Эти устройства, универсальные по характеру применения, могут встраиваться в отдельные машины, объекты, системы. Они находят все большее применение в бытовой технике (телефонах, телевизорах, электронных часах, микроволновых печах и т.д.), в городском хозяйстве (энерго-, тепло-, водоснабжении, регулировке движения транспорта и т.д.), на производстве (робото­технике, управлении технологическими процессами). Постепенно они входят в нашу жизнь, все больше изменяя среду обитания человека.

Таким образом, можно предложить следующую классификацию средств вычислительной техники, в основу которой положено их раз­деление по быстродействию:

• суперЭВМ для решения крупномасштабных вычислительных за­дач, для обслуживания крупнейших информационных банков дан­ных;

• большие ЭВМ для комплектования ведомственных, территориаль­ных и региональных вычислительных центров;

• средние ЭВМ широкого назначения для управления сложными тех­нологическими производственными процессами. ЭВМ этого типа могут использоваться и для управления распределенной обработ­кой информации в качестве сетевых серверов;

• персональные и профессиональные ЭВМ, позволяющие удовлет­ворять индивидуальные потребности пользователей. На базе это­го класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня;

• встраиваемые микропроцессоры, осуществляющие автоматиза­цию управления отдельными устройствами и механизмами.

С развитием сетевых технологий все больше начинает использо­ваться другой классификационный признак, отражающий место и роль ЭВМ в сети:

• мощные машины и вычислительные системы для управления ги­гантскими сетевыми хранилищами информации;

• кластерные структуры;

• серверы;

• рабочие станции;

• сетевые компьютеры.

Мощные машины и вычислительные системы предназначаются для обслуживания крупных сетевых банков данных и банков знаний. По своим характеристикам их можно отнести к классу суперЭВМ, но в отличие от них они являются более специализированными и ориенти­рованными на обслуживание мощных потоков информации.

Кластерные структуры представляют собой многомашинные распределенные вычислительные системы, объединяющие несколько серверов. Это позволяет гибко управлять ресурсами сети, обеспечи­вая необходимую производительность, надежность, готовность и дру­гие характеристики.

Серверы — это вычислительные машины и системы, управляю­щие определенным видом ресурсов сети. Различают файл-серверы, серверы приложений, факс-серверы, почтовые, коммуникационные, Web-серверы и др.

Термин «рабочая станция » отражает факт наличия в сетях або­нентских пунктов, ориентированных на работу профессиональных пользователей с сетевыми ресурсами. Этот термин как бы отделяет их от ПЭВМ, обеспечивающих работу основной массы непрофессио­нальных пользователей, работающих обычно в автономном режиме.

Сетевые компьютеры представляют собой упрощенные персональ­ные компьютеры, вплоть до карманных ПК. Их основным назначени­ем является обеспечение доступа к сетевым информационным ресур­сам. Вычислительные возможности у них достаточно низкие.

Высокие скорости вычислений, обеспечиваемые ЭВМ различных классов, позволяют перерабатывать и выдавать все большее количе­ство информации, что, в свою очередь, порождает потребности в со­здании связей между отдельно используемыми ЭВМ. Поэтому все со­временные ЭВМ в настоящее' время имеют средства подключения к сетям связи и объединения в системы.

Перечисленные типы ЭВМ, которые должны использоваться в ин­дустриально развитых странах, образуют некое подобие пирамиды с определенным соотношением численности ЭВМ каждого слоя и набо­ром их технических характеристик. Распределение вычислительных возможностей по слоям должно быть сбалансировано. Например, система обработки данных, используемая на Олимпийских играх в Ат­ланте (примерно такая же система была и в Японии), содержала: 4 больших ЭВМ S/390, 16 систем RS/6000, более 80 систем AS/400, бо­лее 7000 IBMPC, более 1000 лазерных принтеров, более 250 локаль­ных сетей TokenRing и др. Многие ПЭВМ имели сопряжение с датчи­ками скорости, времени и т.д.

Требуемое количество суперЭВМ для отдельной развитой страны должно составлять 100—200, больших ЭВМ — тысячи, средних — десятки и сотни тысяч, ПЭВМ — миллионы, встраиваемых микро-. ЭВМ — миллиарды. Все используемые ЭВМ различных классов об­разуют машинный парк страны, жизнедеятельность которого и его информационное насыщение определяют успехи информатизации об­щества и научно-технического прогресса страны. Формирование сба­лансированного машинного парка является сложной политической, экономической и социальной проблемой, решение которой требует мно­гомиллиардных инвестиций. Для этого должна быть разработана со­ответствующая структура: создание специальных производств (эле­ментной базы ЭВМ, программного обеспечения и технических связей), смена поколений машин и технологий, изменение форм экономичес­кого и административного управления, создание новых рабочих мест и т.д.

4. Общие принципы построения современных ЭВМ

Основным принципом построения всех современных ЭВМ являет­ся программное управление. В основе его лежит представление алго­ритма решения любой задачи в виде программы вычислений.

«Алгоритм — конечный набор предписаний, определяющий реше­ние задачи посредством конечного количества операций». «Програм­ма для ЭВМ — упорядоченная последовательность команд, подлежа­щая обработке» (стандарт ISO 2382/1-84 г.). Следует заметить, что строгого, однозначного определения алгоритма, равно как и однознач­ных методов его преобразования в программу вычислений, не суще­ствует. Принцип программного управления может быть осуществ­лен различными способами. Стандартом для построения практически всех ЭВМ стал способ, описанный Дж. фон Нейманом в 1945 г. при построении еще первых образцов ЭВМ. Суть его заключается в сле­дующем.

Все вычисления, предписанные алгоритмом решения задачи, дол­жны быть представлены в виде программы, состоящей из последова­тельности управляющих слов — команд. Каждая команда содержит указания на конкретную выполняемую операцию, местонахождение (адреса) операндов и ряд служебных признаков. Операнды — переменные, значения которых участвуют в операциях преобразования данных. Список (массив) всех переменных (входных данных, проме­жуточных значений и результатов вычислений) является еще одним неотъемлемым элементом любой программы.

К-во Просмотров: 599
Бесплатно скачать Реферат: Основные характеристики ЭВМ