Реферат: Основные материалы микроэлектроники, применяемые в процессе ее развития

Введение

1. Основные этапы развития электроники

1.1. Основная тенденция развития микроэлектроники

1.2. Кремний и углерод как основные материалы технических и живых систем

2. Основные материалы микроэлектроники

2.1 Физическая природа свойств твёрдых тел

2.2. Ионные и электронные полупроводники

2.3. Новые перспективные материалы для електроники

Выводы

Л итература


Введение

Бурное развитие радиоэлектронной аппаратуры не могло происходить без существенного улучшения её параметров. В радиоэлектронике и электронной технике появилось новое, успешно развивающееся направление – микроэлектроника. За сравнительно короткий исторический отрезок времени (первый транзистор был изготовлен в 1948 году, первая интегральная схема – в 1958 году) микроэлектроника стала ведущим направлением, определяющим прогресс в развитии радиоэлектронной аппаратуры.

Твердотельная электроника – это новое научно-техническое направление, которое посредством физических, химических, схемотехнических и технологических методов и приёмов решает проблему создания высоконадёжных электронных устройств.

В качестве основных конструкционных материалов в микроэлектронике используются полупроводники, металлы и диэлектрики. В данном реферате рассмотрены основные материалы, которые нашли применение в микроэлектронике.


1. Основные этапы развития электроники

В 1948 г. весь потенциал твёрдотельной электроники скрывался в единственном экспериментальном образце транзистора, действие которого было не понятно даже его творцам. Через 10 лет твёрдотельные приборы уже выиграли сражение с лампами за вычислительную технику и породили объект нового поколения – организованное скопление транзисторов в одном кристалле, называемое интегральной микросхемой.

Современный кристалл массой в десятки миллиграммов обладает значительно большей вычислительной производительностью, чем первые ЭВМ с массой в десятки тонн.

Микроэлектроника – это способ организации электронных процессов, который позволяет обрабатывать информацию в малых объёмах твёрдого тела. И идеальной целью является система, сочетающая совершенство организации мозга с быстродействием твёрдотельных процессов.

Взаимопроникновение процессов разработки, синтеза, функционирования и деградации в перспективе ведёт к схеме реализованной природой в биосистемах. При этом в микроэлектронике технология приобретает функциональное значение и определяет принципиальные возможности систем.

Точные информационные системы создаются методами физико-химической технологии. Ещё в 1874 г. Браун открыл выпрямляющее свойство контакта металл-полупроводник (PbS), и приборы этого типа даже получили довольно широкое распространение в последней четверти прошлого века. Но изобретение вакуумного диода (1904, Флеминг) и триода (1906, Ли де Форест) положило конец этой эре полупроводников. Настоящее время полупроводников наступило только в 50-х годах после изобретения транзистора, при этом уместно вспомнить работы Лишенфильда, который ещё в 1925 году высказал идею возможности создания полевого транзистора. Однако первым в 1948 году Бардиным, Браттейном и Шокли был создан биполярный транзистор, а спустя 10 лет был реализован и полевой транзистор.

1.1 Основная тенденция развития микроэлектроники

Современная технология микроэлектроники основана на двух принципах: последовательном формировании тонких слоёв или плёнок при определённых режимах и создании топологических рисунков с помощью микролитографии. Технологические основы этих принципов уходят вглубь веков.

Одним из функциональных вопросов технологии является вопрос можно ли полностью устранить механические совмещения и осуществить синтез твёрдотельной структуры в едином физико-химическом процессе. Те сведения, которыми мы сегодня располагаем относительно материалов, физико-химической технологии и физических принципов не позволяют дать положительный ответ. Однако развитие живой природы (генетический код), история развития техники говорит о том, что такое решение возможно. Но радикальные изменения в технологии всегда сопряжены с новой физикой, новыми материалами и новой элементной базой.

Основная тенденция микроэлектроники, устойчиво сохраняющаяся уже более 40 лет – повышение степени интеграции N. Перспективность этой тенденции обусловлена тем, что при отлаженном серийном производстве стоимость изделий практически не зависит от их сложности и определяется в основном производительностью оборудования. Повысить степень интеграции N можно за счёт уменьшения размеров элементов или за счёт увеличения размера кристалла. Оба эти способа успешно реализуются на практике.

Здесь уместно отметить, что реальные машины создавали электротехники, ламповые – радиоинженеры, транзисторные – специалисты по физике твёрдого тела и твёрдотельной электронике, ЭВМ на малых микросхемах – специалисты по логическому проектированию, ЭВМ на больших интегральных микросхемах – специалисты по системотехнике.

1.2 Кремний и углерод как основные материалы технических и живых систем

Кремний был единственным материалом, раскрывшим потенциал твердотельной интегральной схемотехники, и он остаётся практически единственной основой планарной технологии до настоящего времени. Несмотря на многообразие новых материалов и новых принципов, кремний и сегодня широко используется.

Среди полупроводников у кремния есть единственный серьёзный соперник – арсенид галлия. Обладая более высокой подвижностью носителей, GaAs позволяет достичь в 5 раз более высоких пределов быстродействия. Полуизолирующий арсенид галлия открывает путь к эффективной внутрисхемной изоляции, а как следствие – к более низкой мощности рассеяния, чем у кремния. Кремний не позволяет реализовать излучающие диоды, но он обеспечивает фотоприёмными системами весь видимый и близкий ИК-диапазоны.

Наконец, существует ещё два сильных фактора: доступность материала и его нетоксичность для человека. Кремний полностью удовлетворяет обоим критериям. Приведём данные распространённости в земной коре наиболее часто используемых материалов микроэлектроники: Si – 26,0%, Al – 7,45%, C – 0,35%, P – 0,12%, Gd – 7,5∙10-4 %, As - 5∙10-4%, Ge - 4∙10-4%, Ga - 1∙10-4%.

И так, сегодня монокристаллический кремний – основа активной структуры СБИС, поликремний – связи и сопротивления, окисел и нитрид кремния – идеальные диэлектрики, а также оптические волноводы. Кремний используется для чувствительных датчиков давления.

Кремний и углерод находятся в 4 группе периодической системы. Углерод служит основой жизни биосистем, а кремний основой “жизни” кристаллических информационных систем. Таким образом мыслящие C-системы дополняют себя быстродействующими Si-системами.


2. Основные материалы микроэлектроники

2.1 Физическая природа свойств твёрдых тел

Бурное развитие радиоэлектронной аппаратуры не могло происходить без существенного улучшения её параметров. В радиоэлектронике и электронной технике появилось новое, успешно развивающееся направление – микроэлектроника. За сравнительно короткий исторический отрезок времени (первый транзистор был изготовлен в 1948 году, первая интегральная схема – в 1958 году) микроэлектроника стала ведущим направлением, определяющим прогресс в развитии радиоэлектронной аппаратуры.

Твердотельная электроника – это новое научно-техническое направление, которое посредством физических, химических, схемотехнических и технологических методов и приёмов решает проблему создания высоконадёжных электронных устройств.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 327
Бесплатно скачать Реферат: Основные материалы микроэлектроники, применяемые в процессе ее развития