Реферат: Основные понятия астрономии
У не заходящего на данной широте светила М видны (над горизонтом) обе кульминации, у звезд, которые восходят и заходят, М1 и М2 нижняя кульминация происходит под горизонтом, ниже точки севера. У светила М3 , находящегося далеко к югу от небесного экватора, обе кульминации могут быть невидимы. Момент верхней кульминации центра Солнца называется истинным полднем, а момент нижней кульминации – истинной полночью. В истинный полдень тень от вертикального стержня падает вдоль полуденной линии.
4. Эклиптика и «блуждающие» светила-планеты
В данной местности каждая звезда кульминирует всегда на одной и той же высоте над горизонтом, потому что ее угловое расстояние от полюса мира и от небесного экватора не меняется. Солнце же и Луна меняют высоту, на которой они кульминируют.
Если по точным часам замечать промежутки времени между верхними кульминациями звезд и Солнца, то можно убедиться, что промежутки между кульминациями звезд на четыре минуты короче, чем промежутки между кульминациями Солнца. Значит, за время одного оборота небесной сферы Солнце успевает сдвинуться относительно звезд к востоку – в сторону, противоположную суточному вращению неба. Этот сдвиг составляет около 1°, так как небесная сфера делает полный оборот – 360° за 24 ч. За 1 ч, равный 60 мин, она поворачивается на 15°, а за 4 мин – на 1°. За год Солнце описывает большой круг на фоне звездного неба.
Кульминации Луны запаздывают ежесуточно уже не на 4 мин, а на 50 мин, так как Луна делает один оборот навстречу вращению неба за месяц.
Планеты перемещаются медленнее и более сложным образом. Они движутся на фоне звездного неба то в одну, то в другую сторону, иногда медленно выписывая петли. Это обусловлено сочетанием их истинного движения с движениями Земли. На звездном небе планеты (в переводе с древнегреческого «блуждающие») не занимают постоянного места, так же как Луна и Солнце. Если составить карту звездного неба, то указать на ней положение Солнца, Луны и планет можно лишь для определенного момента.
Видимое годовое движение Солнца происходит по большому кругу небесной сферы, называемому эклиптикой.
Перемещаясь по эклиптике, Солнце дважды пересекает небесный экватор в так называемых равноденственных точках. Это бывает около 21 марта и около 23 сентября, в дни равноденствий. В эти дни Солнце находится на небесном экваторе, а он всегда делится плоскостью горизонта пополам. Поэтому пути
Солнца над и под горизонтом равны, следовательно, равны продолжительности дня и ночи.
22 июня Солнце дальше всего от небесного экватора в сторону северного полюса мира. В полдень для северного полушария Земли оно выше всего над горизонтом, день самый длинный – это день летнего солнцестояния, 22 декабря, в день зимнего солнцестояния, Солнце отходит дальше всего к югу от экватора, в полдень оно стоит низко, и день самый короткий.
Обожествление Солнца в древности породило мифы, в иносказательной форме описывающие периодически повторяющиеся события «рождения», «воскресения» «бога-Солнца» в течение года: умирание природы зимой, ее возрождение весной и т.п. Христианские праздники носят в себе следы культа Солнца.
Движение Солнца по эклиптике является отображением обращения Земли вокруг Солнца. Эклиптика пролегает через 12 созвездий, называемых зодиакальными (от греческого слова зоон – животное), а их совокупность называется поясом зодиака. В него входят следующие созвездия: Рыбы, Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей, Каждое зодиакальное созвездие Солнце проходит около месяца. Точка весеннего равноденствия (одно и двух пересечений эклиптики с небесным экватором) находится в созвездии Рыб. В созвездиях Дева, Лев, Близнецы, Телец, Скорпион, Стрелец много ярких звезд.
Большой круг эклиптики пересекает большой круг небесного экватора под углом 23°27'. В день летнего солнцестояния, 22 июня, Солнце поднимается в полдень над горизонтом выше точки, в которой небесный экватор пересекает меридиан на эту величину. На столько же Солнце бывает ниже экватора в день зимнего солнцестояния, 22 декабря. Таким образом, высота Солнца в верхней кульминации меняется в течение года на 46°54'. Понятно, что в полночь в верхней кульминации бывает зодиакальное созвездие, противоположное тому, в котором находится Солнце. Например, в марте Солнце проходит по созвездию Рыбы, а в полночь кульминирует созвездие Девы. На рисунке 18 показаны суточные пути Солнца над горизонтом в дни равноденствий и солнцестояний для средних широт (вверху) и экватора Земли (внизу).
5. Звездные карты, небесные координаты и время
Карты и координаты
Чтобы сделать звездную карту, изображающую созвездия на плоскости, надо знать координаты звезд. Координаты звезд относительно горизонта, например, высота, хотя и наглядны, но непригодны для составления карт, так как все время меняются. Надо использовать такую систему координат, которая вращалась бы вместе со звездным небом. Она называется экваториальной системой. В ней одной координатой является угловое расстояние светила от небесного экватора, называемое склонением . Оно меняется в пределах ±90° и считается положительным к северу от экватора и отрицательным – к югу. Склонение аналогично географической широте.
Вторая координата аналогична географической долготе и называется прямым восхождением α.
Прямое восхождение светила М измеряется углом между плоскостями большого круга, проведенного через полюсы мира и данное светило М, и большого круга, проходящего через полюсы мира и точку весеннего равноденствия. Этот угол отсчитывают от точки весеннего равноденствия ϒ против хода часовой стрелки, если смотреть с северного полюса. Он изменяется от 0 до 360° и называется прямым восхождением потому, что звезды, расположенные на небесном экваторе, восходят в порядке возрастания их прямого восхождения. В этом же порядке они кульминируют друг за другом. Поэтому, а выражают обычно не в угловой мере, а во временной, и исходят из того, что небо за 1 ч поворачивается на 15°, а за 4 мин – на 1°. Поэтому прямое восхождение 90° иначе будет 6 ч, а 7 ч 18 мин = 109°30΄. В единицах времени по краям звездной карты надписывают прямые восхождения.
Существуют также и звездные глобусы, где звезды изображены на сферической поверхности глобуса.
На одной карте можно изобразить без искажений только часть звездного неба. Начинающим пользоваться такой картой трудно, потому что они не знают, какие созвездия видны в данное время и как они расположены относительно горизонта. Удобнее подвижная карта звездного неба. Идея ее устройства проста. На карту наложен круг с вырезом, изображающим линию горизонта. Вырез горизонта эксцентричен, и при вращении накладного круга в вырезе будут видны созвездия, находящиеся над горизонтом в разное время. Как пользоваться такой картой, сказано в приложении VII.
Высота светил в кульминации
Найдем зависимость между высотой h светила М в верхней кульминации, его склонением и широтой местности .
Отвесная линия ZZ΄ ось мира РР' и проекции небесного экватора EQ и линии горизонта NS (полуденная линия) на плоскость небесного меридиана ( PZSP ' N ) Угол между полуденной линией NS и осью мира РР' равен, как мы знаем, широте местности . Очевидно, наклон плоскости небесного экватора к горизонту, измеряемый углом , равен 90° – (рис. 20). Звезда М со склонением б, кульминирующая к югу от зенита, имеет в верхней кульминации высоту
h = 90° – + .
Из этой формулы видно, что географическую широту можно определить, измеряя высоту любой звезды с известным склонением 6 в верхней кульминации. При этом следует учитывать, что если звезда в момент кульминации находится к югу от экватора, то ее склонение отрицательно.
Точное время
Для измерения коротких промежутков времени в астрономии основной единицей является средняя длительность солнечных суток, т.е. средний промежуток времени между двумя верхними (или нижними) кульминациями центра Солнца. Среднее значение приходится использовать, потому что в течение года длительность солнечных суток слегка колеблется. Это связано с тем, что Земля обращается вокруг Солнца не по кругу, а по эллипсу и скорость ее движения при этом немного меняется. Это и вызывает небольшие неравномерности в видимом движении Солнца по эклиптике в течение года.
Момент верхней кульминации центра Солнца, как мы уже говорили, называется истинным полднем. Но для проверки часов, для определения точного времени нет надобности отмечать по ним именно момент кульминации Солнца. Удобнее и точнее отмечать моменты кульминации звезд, так как разность моментов кульминации любой звезды и Солнца точно известна для любого времени. Поэтому для определения точного времени с помощью специальных оптических приборов отмечают моменты кульминаций звезд и проверяют по ним правильность хода часов, «хранящих» время. Определяемое таким образом время было бы абсолютно точным, если бы наблюдаемое вращение небосвода происходило со строго постоянной угловой скоростью. Однако оказалось, что скорость вращения Земли вокруг оси, а следовательно и видимое вращение небесной сферы, испытывает со временем очень небольшие изменения. Поэтому для «хранения» точного времени сейчас используются специальные атомные часы, ход которых контролируется колебательными процессами в атомах, происходящими на неизменной частоте. Часы отдельных обсерваторий сверяются по сигналам атомного времени. Сравнение времени, определяемого по атомным часам и по видимому движению звезд, позволяет исследовать неравномерности вращения Земли.
Определение точного времени, его хранение и передача по радио всему населению составляют задачу службы точного времени, которая существует во многих странах.