Реферат: Основные законы экологии 2

Парная корреляция характеризует тесноту и направленность связи между результативным и факторным признаками. Парная регрессия позволяет описать форму связи в виде уравнения парной регрессии (табл.1).

Таблица 1.Основные виды уравнений парной регрессии

Наименование формы парной регрессии Вид уравнения парной регрессии
Линейная y= а0 + a1x
Гиперболическая y= а0 + a1 (1/x)
Параболическая y= а0 + a1x + a2x2
Степенная y= а0 xa1

Источник http://ru.wikipedia.org

В данной таблице –теоретическое значение результативного признака (y) при определенном значении факторного признака (x), подставленном в регрессионное уравнение; а0 – свободный член уравнения; a1, a2 – коэффициенты регрессии.

Параметры уравнений парной регрессии a1, a2 называют коэффициентами регрессии. Для оценки параметров уравнения парной регрессии используется метод наименьших квадратов (МНК). Он заключается в определении параметров а0, a1, a2, при которых сумма квадратов отклонений фактических значений результата (yi) от теоретических (~ i ) минимизируется. Так описывает исходное условие МНК для парной линейной корреляционной связи:

На его основе определяются частные производные функции f(а0, a1),которые затем приравниваются к 0. Далее полученные уравнения преобразуются в систему нормальных уравнений, из которых определяются параметры а0, a1. При этом число нормальных уравнений в общем случае будет равно числу параметров. При использовании СПП параметры регрессионного уравнения определяются автоматически. В частности, коэффициент парной линейной регрессии a1 определяется в соответствии с (2.2.) и характеризует меру связи между вариациями факторного и результативного признаков. Коэффициент регрессии показывает, на сколько в среднем изменяется значение результативного признака при изменении факторного на единицу:

Тесноту и направление парной линейной корреляционной связи измеряют с помощью линейного коэффициента корреляции , принимающего значения в пределах от –1 до +1 :

Квадрат коэффициента корреляции называют коэффициентом детерминации (r2). Коэффициент детерминации можно интерпретировать как долю общей дисперсии результативного признака (y), которая объясняется вариацией факторного признака (x).

Таблица 2. Оценка характера связи по линейному коэффициенту корреляции.

Значения линейного коэффициента корреляции Характер связи
r = -1 функциональная
-1< r < -0,7 обратная сильная
-0,7 ≤ r ≤ -0,5 обратная умеренная
-0,5 < r < 0 обратная слабая
r=0 отсутствует
0 < r < + 0,5 прямая слабая
+0,5 ≤ r ≤ +0,7 прямая умеренная
+ 0,7< r < + 1 прямая сильная
r = +1 функциональная

Источник http://ru.wikipedia.org

Значимость линейного коэффициента корреляции проверяется на основе t-критерия Стьюдента: проверяется нулевая гипотеза об отсутствии связи между факторным и результативным признаками (H0: r = 0). Для проверки H0 по формуле следует рассчитать t-статистику (tр) и сравнить ее с табличным значением (tт), определяемым с использованием таблицы приложения 2 по заданным уровню значимости (α) и числу степеней свободы (d.f.). Если tр > tт, то гипотеза H0 отвергается с вероятностью ошибки меньше чем α·100%. Это свидетельствует о значимости линейного коэффициента корреляции и статистической существенности зависимости между факторным и результативным признаками.

Аналогично оценивается значимость коэффициента регрессии; tр рассчитывают как отношение взятого по модулю коэффициента регрессии к его средней ошибке с заданными уровнем значимости (α) и числом степеней свободы d.f.= n-2.

3. Анализ связи между размером пенсий и прожиточным минимумом.

Для проведения анализа связи между прожиточным минимумом и размером пенсий, были подобраны данные за период с 2000 по 2007 года (Таблица 3).

Таблица 3

Прожиточный минимум и размер пенсий

Года Размер пенсий Прожиточный минимум
2000 694,3 909
2001 1023,5 1144
2002 1378,5 1379
2003 1637 1605
2004 1914,5 1801
2005 2364 2418
2006 2726,1 2731
2007 3115,5 3065

(Источник:Разработка автора )

По полученным данным была построена диаграмма (Рисунок 1).

Рис. 1. Сравнение размера пенсий и прожиточного минимума.

Далее были рассчитаны параметры линейного и степенного уравнений (Таблица 4)

Таблица4

Коэффициенты уравнений

Линейное Степенное
A 168,7469 0,5515
B 0,9225 0,8341
Уравнение y=168,7469+0,9225x y=0,5515+x0,8341

(Источник: разработка автора)

Были вычислены показатели корреляции и детерминации. (Таблица 5).

Таблица 5

Показатели корреляции и детерминации

Показатели Линейное Степенное
Корреляция 0,9946 0,9891
Детерминация 0,9892 0,9783

(Источник: разработка автора)

Из таблицы 3 видно, что наиболее тесная связь наблюдается в линейном уравнении.

После вычисления t-критериев (таблица 6) и табличного t-критерия

Ттаб = 2,4469 можно прийти к выводу, что tтабл <tфакт в степенном уравнении, поэтому гипотеза Но отклоняется, т.е. a, b и rxy не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х.

tтабл >tфакт в линейном уравнении, поэтому гипотеза Но не отклоняется и признается случайная природа формирования а, b.

Таблица 6

К-во Просмотров: 195
Бесплатно скачать Реферат: Основные законы экологии 2