Реферат: Основоположники промышленной системотехники

В послевоенные годы в Советском Союзе важнейшие научно-технические проблемы - овладение атомной энергией, развитие ракетостроения, космонавтики и др. - решались путем создания мощных научно-производственных центров. Так, в Северодонецке (Украина) в 1956 г. был создан филиал Московского СКБ-245 - ведущей организации по вычислительной технике.

Решающим фактором, определившим развитие работ в создании управляющей вычислительной техники было наличие сложного объекта автоматизации - огромного химического комплекса - Лисичанского химкомбината, изучение которого позволило понять в полном объеме задачи компьютерной автоматизации технологических процессов. Быстро определился ряд талантливых разработчиков, положивших основу инженерной школы в области проектирования и производства вычислительной техники для управления технологическими процессами. Актуальность работы предопределила дальнейшее развитие филиала, превращение его в Научно-исследовательский институт управляющих вычислительных машин (НИИ УВМ), затем - в научно-производственное объединение НПО "Импульс" в составе: НИИ УВМ, его филиалов и ряда предприятий.

Выдающуюся роль в становлении НПО "Импульс" сыграли директор филиала Андрей Александрович Новохатний (первые три года директором филиала был Вячеслав Юрьевич Толкачев) и его заместитель Владислав Васильевич Резанов научный руководитель выполняемых работ.

В основу научно-технической политики они сразу же положили идею создания серийноспособных средств управляющей вычислительной техники для различных (не только химических) объектов автоматизации. На ее основе под руководством В.В.Резанова была в дальнейшем разработана и реализована концепция единой, функционально полной агрегатной (модульной) системы технических и программных средств управляющей вычислительной техники на базе единых конструктивно-технологических решений. Большое внимание уделялось разработке устройств связи с объектом УСО, обеспечивающих съем данных о процессе, передачу их для обработки в вычислительную машину и выдачу сигналов для управления исполнительными механизмами. Такой подход существовал в течение более тридцати лет и полностью себя оправдал, поскольку обеспечил создание полного комплекса средств системотехники, т.е. средств построения самых различных информационно-управляющих систем для технологических процессов и объектов энергетики.

На всем более чем 30-летнем пути коллектив "Импульса" работал подобно великолепно слаженному оркестру, ведущие музыканты которого виртуозно владеют своими инструментами и в совместной игре создают музыкальные шедевры. Именно такой была изначальная небольшая группа ведущих специалистов, (ее называли "могучей кучкой" по аналогии с той, что когда-то определяла развитие музыкального искусства в России), сформировавшаяся в годы становления "Импульса" и сумевшая осуществить казалось бы невозможное - собрать и сплотить вокруг себя многотысячный коллектив однодумцев, увлеченных одной целью - созданием и постоянным совершенствованием средств компьютерной автоматизации технологических процессов и объектов энергетики, в том числе таких ответственных и сложных, как атомные станции.

Более тридцати лет самоотверженной и вдохновенной работы Северодонецкого "Импульса" были отданы созданию средств системотехники 1-го, 2-го, 3-го и 4-го поколений и все это на одном дыхании, работая не покладая рук.

"Могучая кучка" сумела объединить личные интересы каждого из входящих в нее специалистов общей целью, что позволило сохранить единство и целенаправленность работ всего коллектива "Импульса" на всем пути его развития.

Такое стало возможным, потому что "могучую кучку" возглавляли истинные лидеры, делом доказавшие свое право на ведущее положение. И здесь опять проявляется уникальная черта в развитии "Импульса" - такими людьми стали не присланные со стороны руководители с высокими званиями, а свои собственные специалисты, выросшие из "могучей кучки". К их числу относится директор "Импульса" Андрей Александрович Новохатний и бессменный научный руководитель Владислав Васильевич Резанов.

За все годы существования "Импульса", разработавшего четыре поколения средств системотехники, его сотрудниками были защищены две кандидатских диссертации, но это отнюдь не говорит о слабой квалификации его специалистов. Каждый из "могучей кучки" вполне мог бы претендовать на научную степень кандидата или доктора наук. Они поступились этим и предпочитали делать машины!

Многие выходцы из "Импульса" (но не из "могучей кучки" - она сохранялась все годы), попавшие в условия работы обычных научно-исследовательских и других учреждений, не только защищали диссертации и получали высокие научные звания, но и становились руководителями высокого ранга. В этом плане "Импульс", несмотря на отсутствие в нем докторов наук и академиков, играл роль отличной научной и инженерной школы.

Трудное начало

Базовыми производствами на Лисичанском химическом комбинате были производство аммиака и азотной кислоты. Исследованием этих двух объектов на предмет эффективности автоматизации и использования вычислительной техники (которую еще предстояло создать!) и занялись сотрудники филиала СКБ-245.

Главное внимание было уделено производству аммиака, представляющему цепочку крупных взаимосвязанных цехов - от производства синтез-газа, его последующей очистки и синтеза из этого газа аммиака в колоннах высокого давления. При этом производительность колонн синтеза (400 тыс.тонн в год) сильно зависела от состава газа на входе колонны, подаваемого от газогенераторных установок, где метан горел в кислороде при строго фиксированном соотношении, образуя синтез-газ, подлежащий очистке прежде чем поступить на синтез. Если учесть, что метан и кислород при определенных соотношениях образуют взрывную смесь, то неизбежно возникает задача надежного управления и защиты от возможной аварии. Именно для этого объекта было решено создать информационно-управляющую систему, получившую название "Автодиспетчер".

Сотрудники филиала начали исследование основных технологических процессов аммиачного производства, в том числе их алгоритмизацию, выбор способов управления, определение требований к техническим средствам системы.

Прежде всего, был составлен (в первом приближении) алгоритм управления, что позволило определить параметры управляющей машины. Идея строить ее на электронных лампах была отвергнута сразу из-за ненадежности элементной базы. Полупроводниковая техника только начинала свое победоносное шествие. Палочкой-выручалочкой стала система трехтактных феррит-диодных элементов, созданных в лаборатории профессора Л.И.Гутенмахера во Всесоюзном НИИ технической информации (Москва) и усовершенствованных в Пензенском филиале СКБ-245, откуда В.В.Резанов, переезжая в Северодонецк, привез два больших ящика таких элементов и массу идей по их развитию и использованию. "Это была примитивная техника, - вспоминает Владислав Васильевич Резанов. - В элементах в качестве вентелей использовались селеновые шайбочки по причине отсутствия в то время полупроводниковых диодов. Тем не менее, эти элементы были нами доработаны, что позволило начать работу по созданию управляющей машины. Следует сказать, что именно в это же время родилась идея агрегатного построения машины. Разработчики понимали, что им известен только стартовый комплект задач, которых в таком большом и сложном производстве при его развитии может быть очень много. Поэтому машина изначально имела модульную структуру, позволяющую наращивать ресурсы: память, количество входных и выходных сигналов и др. Эти идеи не были полностью реализованы в системе "Автодиспетчер", но учтены впоследствии. Очень важно было решить - как взять информацию с объекта? Ведь ни о каких стандартных сигналах тогда не было и речи. Половина измерительных приборов была поставлена из Германии в комплексе с репарационным химическим оборудованием. Поэтому пришлось разрабатывать индивидуальные преобразователи для каждого типа вторичных приборов. О получении информации непосредственно от первичных датчиков можно было только мечтать. С 1965 года началась ее опытная эксплуатация, в 1967 г. система была введена в круглосуточную эксплуатацию и проработала на комбинате более 24 лет.

Система позволяла контролировать работу аммиачного и спиртового производств, выполняла логический анализ нарушений технологических процессов, вела автоматический учет сырьевых потоков и расчет технико-экономических показателей каждого цеха и производства в целом, автоматическое регулирование состава синтез-газа и продувочного газа в аммиачном производстве. Устройство связи с объектом системы "Автодиспетчер" представляло комбинированную телемеханическую подсистему, позволяющую осуществлять измерение 360 мгновенных значений параметров, 120 интегральных значений параметров, 360 двухпозиционных сигналов с циклом 20 сек, 200 мгновенных 2-х позиционных сигналов. Система вырабатывала 200 однопозиционных команд, 24 аналоговых сигнала управления 0-5 ма. Сбор информации осуществлялся по радиальным каналам через 10 групповых пунктов контроля, установленных в цехах, которые собирали информацию от первичных преобразователей. Групповые преобразователи радиально подключались к вычислительной машине. Расстояние от машины до групповых преобразователей допускалось до 1,2 км. Цикл сбора информации 60 сек.

Вычислительная часть "Автодиспетчера" была построена на феррит-диодных логических элементах, имела ферритовое запоминающее устройство на 1860 двадцатиразрядных чисел, ферритовое пассивное запоминающее устройство емкостью 5632 двадцатиразрядных чисел. Арифметическое устройство оперировало 18 разрядными числами с фиксированной запятой. Система команд одноадресная, количество операций 28. Работа в этот период осуществлялась по фиксированной программе, написанной в машинных командах.

В процессе работы над системой "Автодиспетчер" обнаружилось еще несколько важнейших моментов, связанных с тем, что исследовался разработанный на огромной территории сложный технологический комплекс, включающий многие объекты управления, взаимосвязанные между собой.

Выяснилось, что задачи управления возможно разделить на три группы: первая группа задач связывалась с проблемой первичной обработки информации перед передачей ее в управляющую машину; вторая сводилась к программному управлению объектами с целью оптимизации протекающих в них технологических процессов, а третья заключалась в координации работы объектов производственного процесса. Отсюда родилась идея создания трехуровневой системы технических средств для оперативного управления сложными производствами СОУ-1. Второй вывод, сделанный в то время - необходима единая система технических и программных средств от датчика до исполнительного механизма, разработанных на основе единой системы стандартов и позволяющая проектным путем комплектовать различные системы управления. Изобретать технические и программные средства для каждого объекта управления недопустимо. Поэтому СОУ-1 была задумана как трехуровневый комплекс технических средств для управления различными процессами".

В период создания системы "Автодиспетчер" параллельно выполнялась разработка машины "Автооператор" для так называемого прямого цифрового управления. Дело в том, что при первичной обработке информации возникают задачи регулирования (стабилизации) процессов, которые выполнялись аналоговыми регуляторами. На некоторых объектах число автономных контуров регулирования достигает нескольких десятков. В то же время прямое цифровое регулирование по любому закону (многоканальное, пропорциональное, связанное и т.п.) можно осуществить от одной машины путем использования соответствующих программ. Эта идея была реализована в машине "Автооператор" (впервые в Украине и Советском Союзе). В качестве объекта управления была выбрана установка концентрирования крепкой азотной кислоты Чернореченского химзавода Нижегородской области, где качественное регулирование по косвенным параметрам позволяло значительно улучшить характеристики конечного продукта - ракетного топлива.

В функции "Автооператора" входило:

- прямое цифровое регулирование технологическими процессами концентрирования азотной кислоты на ряде колонн в обегающем режиме с заданным периодом Т (3-5 мин);

- управление процессами пуска и остановки одной колонны;

- регистрация основных параметров и сигнализация о нарушениях технологического процесса.

Управляющий вычислительный комплекс состоял из четырех функциональных частей.

1. Входное устройство или устройство связи с объектом, обеспечивающее сбор информации с объекта управления, преобразование принятых аналоговых сигналов в цифровую форму, ввод цифровой информации в машину. Датчиками измеряемых параметров служили серийные приборы с унифицированным выходом. Точность преобразования - 8 двоичных разрядов. Входное устройство обеспечивало связь процессора с регулируемым объектом, циклически опрашивая (за интервал Т) датчики, установленные на объекте.

2. Процессорная часть машины, построенная на феррит-диодных логических элементах. Процессор выполнял 28 арифметических, логических и операций управления. Производительность - 900 операций сложения, 80 умножения, 70 деления за секунду. Оперативное запоминающее устройство на ферритовых сердечниках диаметром 1 мм, емкостью 256 18-разрядных двоичных слов.

3. Для хранения программ управления, констант и уставок использовалось постоянное запоминающее устройство на ферритовых сердечниках диаметром 4 мм. Информация в него заносилась путем прошивки ферритовых колец. Для задания переменной части уставки имелось наборное поле, коммутируемое штекерами.

4. Выходное устройство, служащее для преобразования рассчитанных цифровых управляющих воздействий в пропорциональные пневматические сигналы от 0 до 1 атмосферы с точностью 7 двоичных разрядов. Сигналы передавались на пневматические исполнительные механизмы (пневматические клапаны), которые обеспечивали регулирование технологического процесса. Оно же формировало дискретные сигналы для включения и выключения различных исполнительных устройств.

Автоматическое управление осуществлялось по определенному закону. Пуск и остановка колонны производились по фиксированной программе. Алгоритм управления в этих режимах был составлен на основе анализа технологических процессов. Реализующая его программа состояла из двух частей:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 1113
Бесплатно скачать Реферат: Основоположники промышленной системотехники