Реферат: Основы электроники
Целью настоящей работы является изучение одного из вариантов исполнения электрических схем генераторов сигналов специальной формы.
2. Основные теоретические положения.
2.1. Принцип действия генераторов электрических сигналов основан на использовании явления положительной обратной связи, охватывающей усилительные каскады (рис. 1).
рис. 1.
Причем, для возникновения генерации необходимо, чтобы коэффициент усиления каскада К — превышал некоторое критическое значение , что при использовании современной элементной базы не является проблемой.
Форма сигнала, вырабатываемого генератором, зависит от вида цепи положительной обратной связи. Если в качестве элемента цепи обратной связи использовать полосовой фильтр высокой добротности, то генератор будет вырабатывать сигнал синусоидальной формы определенной частоты. Такие устройства носят название генераторов гармонических сигналов.
К другому классу генераторов относятся т.н. генераторы сигналов специальной формы, вырабатывающие сигналы прямоугольной, треугольной, пилообразной и т.д. формы.
Схемные реализации упомянутых генераторов весьма многочисленны. Остановимся на одной из них.
2.2. На рис. 2 представлена схема генератора сигнала прямоугольной формы. Такие генераторы также называют мульивибраторами.
рис. 2.
Представленный генератор представляет собой операционный усилитель ОУ — ДА, охваченный положительной обратной связью через цепь R2 — R3. С другой стороны, эту схему можно охарактеризовать исходя из того, что ОУ — ДА с резисторами R2 — R3 представляют регенеративный компаратор, так называемый триггер Шмидта, охваченный ООС по цепи R1 — C.
Эпюры напряжений, поясняющие работу генератора, представлена на рис. 3.
рис. 3.
Рассмотрим работу генератора.
2.2.1. При включении питания в силу действия положительной обратной связи в схеме происходит лавинообразный процесс, в результате которого напряжение на выходе ОУ устанавливается на уровне напряжения насыщения положительной или отрицательной полярности. Пусть, например, в момент времени t=0 установилось напряжение +Uнас .
2.2.2. С этого момента времени начинается заряд конденсатора С по цепи: (+Uп1) — (выход ДА) — (R1) — (С) — (“корпус” — ).
Напряжение на конденсаторе Uc растет по экспоненте, стремясь к величине +Uнас (участок t0 — t1 на рис. 3).
2.2.3. На этом отрезке времени на входе “Р” ОУ действует положительное напряжение U0 , определяемое соотношением:
U0 = Uнас R3 / (R2 + R3) , (1)
Как только возрастающее напряжение на конденсаторе Uc достигнет этого значения, произойдет лавинообразный процесс, приводящий к “опрокидыванию” мультивибратора и установлению на его выходе напряжения -Uнас — момент времени t1 .
2.2.4. С этого момента происходит перезаряд конденсатора С по цепи: (“корпус” — ) — (С) — (R1) — (выход ДА) — (-Uп2). Напряжение, меняя свой знак, изменяется по экспоненциальному закону, стремясь к напряжению -Uнас (участок t1 — t2).
2.2.5. На этом отрезке времени на входе “Р” ОУ действует уже отрицательное напряжение U0 , определяемое соотношением (1). Как только напряжение на конденсаторе достигнет этого значения, произойдет очередное “опрокидывание” мультивибратора и на его выходе устанавливается напряжение +Uнас (момент t2).
2.2.6. С этого момента времени происходит перезаряд конденсатора С по цепи, писанной в п. 2.2.2. Описанные в п.п. 2.2.2. — 2.2.4. процессы повторяются, т.е. в генераторе устанавливается периодический процесс, формирующий на его выходе разнополярное напряжение прямоугольной формы с амплитудой:
Um = Uнас , (2)
2.2.7. Поскольку процесс перезаряда конденсатора одной и другой полярности происходит по цепям, содержащим идентичные элементы, интервалы времени:
(3)