Реферат: Основы робототехники

При структурном синтезе механизма манипулятора необходимо учитывать следующее:

· кинематические пары манипуляторов снабжаются приводами, включающими двигатели и тормозные устройства, поэтому в схемах манипуляторов обычно используются одноподвижные кинематические пары: вращательные или поступательные;

· необходимо обеспечить не только заданную подвижность свата манипулятора, но и такую ориентацию осей кинематических пар, которая обеспечивала необходимую форму зоны обслуживания, а также простоту и удобство программирования его движений;

· при выборе ориентации кинематических пар необходимо учитывать расположение приводов (на основании или на подвижных звеньях), а также способ уравновешивания сил веса звеньев.

Задачи механики манипуляторов

К основным задачам механики манипуляторов можно отнести:

· разработку методов синтеза и анализа исполнительных механизмов (включая механизмы приводов);

· программирование движения манипулятора;

· расчет управляющих усилий и реакций в КП;

· уравновешивание механизмов манипуляторов;

· другие задачи.

Эти задачи решаются на базе общих методов исследования структуры, геометрии, кинематики и динамики систем с пространственными многоподвижными механизмами. Каждая из рассматриваемых задач может быть сформулирована как прямая (задача анализа) или как обратная (задача синтеза). При определении функций положения механизма, в прямой задаче находят закон изменения абсолютных координат выходного звена по заданным законам изменения относительных или абсолютных координат звеньев. В обратной - по заданному закону движения схвата находят законы изменения координат звеньев, обычно, линейных или угловых перемещений в приводах. Решение обратной задачи или задачи синтеза более сложно, так как часто она имеет множество допустимых решений, из которых необходимо выбрать оптимальное. В обратной задаче кинематики по требуемому закону изменения скоростей и ускорений выходного звена определяются соответствующие законы изменения скоростей и ускорений в приводах манипулятора. Обратная задача динамики заключается в определении закона изменения управляющих сил и моментов в приводах, обеспечивающих заданный закон движения выходного звена.

Кинематический анализ механизма манипулятора

Первая и основная задача кинематики - определение функции положения. Для пространственных механизмов наиболее эффективными методами решения этой задачи являются векторный метод и метод преобразования координат. При решении прямой задачи о положении захвата манипулятора обычно используют метод преобразования координат. Из множества методов преобразования координат [ 1, 2 ] , которые отличаются друг от друга правилами выбора осей локальных систем координат, для манипуляторов обычно используется метод Денавита и Хартенберга.

Опишем два вида матриц:

· матрицы М , определяющие отношение между системами координат соседних звеньев;

· матрицы Т , определяющие положение и ориентацию каждого звена механизма в неподвижной или базовой системе координат.

Воспользуемся однородными координатами трехмерного проективного пространства РR3 , в которых движение евклидова пространства R3 можно представить линейным преобразованием:

где: Мij - матрица 4x4 вида

Это преобразование эквивалентно преобразованию в эвклидовом пространстве где .То есть преобра-зованию, которое включает поворот, определяемый матрицей Uij размерностью 3х3, и параллельный перенос, задаваемый вектором размерностью 3. В однородном пространстве положение точки будут определять не три x, y и z, а четыре величины x' , y' , z' и t' , которые удовлетворяют следующим соотношениям:

x = x'/t', y = y'/t', z = z'/t'.

Обычно принимают t' =1. У матрицы поворота Uij элементами uij являются направляющие косинусы углов между новой осью i и старой осью j . Вектор - трехмерный вектор, определяющий положение начала новой системы координат i в старой системе j . Выбор расположения осей должен соответствовать решаемой задаче. При решении задачи о положениях необходимо: в прямой задаче определить положение выходного звена как функцию перемещений в приводах, в обратной - заданное положение выходного звена представить как функцию перемещений в приводах. Выбор расположения и ориентации локальных систем координат должен обеспечивать выполнение этих задач. При использовании метода Денавита и Хартенберга оси координат располагаются по следующим правилам:

1. Для звена i ось zi направляется по оси кинематической пары, образуемой им со звеном (i+1 ). Начало координат размещают в геометрическом центре этой пары.

2. Ось xi направляется по общему перпендикуляру к осям zi-1 и zi с направлением от zi-1 к zi . Если оси zi-1 и zi совпадают, то xi перпендикулярна к ним и направлена произвольно. Если они пересекаются в центре кинематической пары, то начало координат располагается в точке пересечения, а ось xi направляется по правилу векторного произведения (кратчайший поворот оси zi до совмещения с zi-1 при наблюдении с конца xi должен происходить против часовой стрелки).

3. Ось yi направляется так, чтобы система координат была правой.

В прямой задаче необходимо определить положение схвата манипулятора и связанной с ним системы координат Mxn yn zn по отношению к неподвижной или базовой системе координат Kx0 y0 z0 . Это осуществляется последовательными переходами из системы координат звена i в систему координат звена i-1 . Согласно принятому методу, каждый переход включает в себя последовательность четырех движений: двух поворотов и двух параллельных переносов, осуществляемых в указанной последовательности (рис. 3):

· поворот i-ой системы вокруг оси xi на угол -qi до параллельности осей zi и zi-1 (положительное направление поворота при наблюдении с конца вектора xi против часовой стрелки);

К-во Просмотров: 293
Бесплатно скачать Реферат: Основы робототехники