Реферат: Особенности химической формы развития материи
В разработанной А.П. Руденко теории саморазвития открытых каталитических систем объектом химической эволюции рассматривается не молекула, а каталитическая система, включающая взаимодействующие молекулы, катализаторы и химическую среду. Основным показателем развития каталитической системы является абсолютная каталитическая активность, рост которой служит основой эволюционных изменений каталитической системы, ее усложнения, которое происходит с нарастающей вероятностью.
Паритетность химических синтезов является относительной, ибо химические элементы неравноценны по своему химическому содержанию и, следовательно, эволюционному потенциалу. Поскольку наиболее богатым химическим элементом является углерод, с ним связано магистральное направление химической эволюции. Атомы углерода образуют так называемую полипептидную связь, последовательность сотен тысяч атомов углерода, к которой могут присоединяться любые другие химические атомы и их группы. Химическая эволюция приводит к появлению такого химического субстрата, который получает все более богатое химическое содержание и становится основой химической эволюции, приобретает автономность и устойчивость. Субстратный синтез теряет при этом свой прежний «паритетный» характер, постепенно исчерпывает себя, а развивающийся химический субстрат становится все более способным к самостоятельной эволюции, к саморазвитию. Важнейшим свойством такого субстрата оказывается самосохранение, которое осуществляется благодаря тому, что химическая диссоциация превращается в средство поддержания синтеза, поддержания целостности автономного субстрата. Когда химический процесс оказывается таким образом «замкнутым на самого себя», т.е. становится средством поддержания целостности материальной системы, химический субстрат превращается в живую материю, а химический процесс становится жизненным процессом. По глубокому замечанию Ф. Энгельса, жизнь — это самосохраняющийся химический процесс. Жизнь, таким образом, является закономерным и необходимым результатом химической эволюции природы.
Направленность химической эволюции на живое осуществляется посредством двух основных механизмов: химической изменчивости и химического отбора, которые по мере приближения химического к критическому периоду (скачку) усложняются, накапливают в себе потенциальное биологическое содержание. Изменчивость, как и отбор, не носит чисто случайный характер, а имеет определенные «каналы», направленность, что, разумеется, не исключает случайности в предмутацноннсм процессе.
Основные ступени химической эволюции не случайны по отношению к сущности химической формы материи, что их детерминация не сводится лишь к непосредственной, попарной связи друг с другом, а имеет сквозной характер. Одной из основных закономерностей развития является аккумуляция содержания – выражающей сущностную сторону развития.
Второй путь дальнейшего решения проблемы детерминации развития связан с исследованием законов развития химической формы материи, поскольку они выступают в качестве наиболее существенных детерминант развития. Периодический закон со своей физической стороны безусловно выступает как закон развития элементов, поскольку ядра атомов возникают в процессе ядерного синтеза и различаются по степени сложности. Но усложнение ядер атомов не является собственно химической эволюцией.
В своей общей формулировке периодичеокий закон явно выступает как закон, выражающий лишь общее – периодическую зависимость свойств элементов вообще от их места в системе элементов. Но развернутая интерпретация его с необходимостью включает в своя указание на существование закономерной последовательности различных особенных. Детерминация особенного периодическим законом выражается, во-первых, в том, что этот закон в существенной мере обусловливает качественную неоднородность элементов, связанную о их различной сложностью и, следовательно, с различной ролью в химическом мире и его эволюции. Детерминируя в определенной мере своеобразие углерода как химически наиболее сложного элемента, обладающего наивысшим эволюционным потенциалом, периодический закон в существенной степени детерминирует и общее направление химической эволюции от элементарного уровня до возникновения живой материи. В этом смысле закон периодичности возникает вместе с началом химической эволюции (элементным уровнем химического) и является «априорным» по отношению ко всей последующей эволюции. Поэтому надо заключить, что основные этапы химической эволюции в существенной мере обусловливаются этим законом.
Включенность особенного в содержание закона отнюдь не означает, что содержание особенного полностью заключено в нем. Способ включения особенного в закон еще не получил достаточного исследования в философской литературе. Характеризуя его в некотором приближении, можно сказать, что особенное входит в закон частично, выражено в нем в виде тенденции . Поэтому периодический закон содержит в себе только какую-то сторону направленности развития химического. В своем полном виде она выражена в сущности химической формы материи, в ее тенденции к прямым субстратным синтезам.
Детерминация развития химической формы материи своей внутренней стороной имеет противоречие между тенденцией к синтезу и тенденцией к диссоциации. Постоянно стремясь к синтезу, преодолевая в процессе его тенденцию к диссоциации, химическое закономерно развивается, поднимаясь с одной ступени на другую. Развитие химической формы материи в этом смысле предстает как процесс развертывания основного противоречия, как последовательность его ступеней или форм.
Аккумуляция
В химической эволюции обнаруживается одна из важнейших закономерностей развития — аккумуляция содержания низших ступеней в высших. Химическая эволюция представляет собой не простую смену одного состояния другим, а накопление, синтез основных результатов развития в последующих ступенях, в результате чего возникает материальный субстрат, обладающий наибольшим многообразием самых различных и даже противоположных свойств. Так, белки, один из важнейших компонентов живой материи, обладают кислотными и основными, гидрофильными и гидрофобными свойствами, обнаруживают все основные типы реакций. В нуклеиновых кислотах — втором важнейшем компоненте живой материи — благодаря их особой структуре происходит накопление информационного содержания в сжатой, кодированной форме.
Возникновение жизни обусловлено прежде всего магистральным направлением химической эволюции, где химическая форма материи выступает в своем оптимальном, или достаточно полном, содержании или многообразии. Учитывая это обстоятельство, большинство крупнейших химиков мира считают, что жизнь не может возникнуть на какой-либо иной, кроме углеродной, основе, например, на базе кремния или азота, которые обладают несравненно меньшим, чем углерод, многообразием химических связей и, следовательно, меньшим потенциалом развития. «Все данные физико-химических исследований, — пишет А.И. Опарин, — говорят нам о том, что иных форм соединений, ведущих к развитию жизни, не может быть». По мнению В.Г. Фесенкова, «во Вселенной органическая жизнь, если она вообще существует, может быть построена только на основе углеводородных соединений».
Аккумуляция содержания сопровождается его универсализапией. В процессе развития содержание не просто накапливается, но приобретает все более общий характер, обогащается общими признаками (чертами). Тенденция к универсальному развитию химического субстрата заложена в элементах-органогенах (способных к созданию молекул с самыми разнообразными функциональными группами, конфигурацией, размерами), широко распространенных во Вселенной. Зрелость и полнота этой тенденции зависят от ступени химической эволюции. На высшей ступени развития химического универсализация выражается в появлении такого субстрата (надмолекулярного комплекса), который может вступать в максимальное многообразие связей и изменяться в соответствии с любыми изменениями среды. Такая сложность и универсальность химического субстрата становятся препятствием к его самостоятельному и устойчивому существованию. Самосохранение его оказывается возможным только в условиях биологической организации. Однако универсальность надмолекулярного комплекса имеет множественный характер, т.е. остается универсальностью множества частей. Живое в отличие от химического облад