Реферат: Особенности проведения анестезиологического пособия в нейрохирургии

Между эндотелиальными клетками мозговых сосудов практически отсутствуют поры. Малочисленность пор — основная морфологическая особенность гематоэнцефалического барьера. Липидный барьер проницаем для жирорастворимых веществ, но значительно ограничивает проникновение ионизированных частиц и крупных молекул. Таким образом, проницаемость гематоэнцефалического барьера для молекулы какого-либо вещества зависит от ее размера, заряда, липо-фильности и степени связывания с белками крови. Углекислый газ, кислород и липофильные вещества (к которым относят большинство анестетиков) легко проходят через гематоэнцефалический барьер, в то время как для большинства ионов, белков и крупных молекул (например, маннитола) он практически непроницаем.

Вода свободно проникает через гематоэнцефалический барьер по механизму объемного тока, а перемещение даже небольших ионов затруднено (время полу выравнивания для натрия составляет 2-4 ч). В результате быстрые изменения концентрации электролитов плазмы (а значит, и осмолярности) вызывают преходящий осмотический градиент между плазмой и мозгом. Остро возникшая гипер-тоничность плазмы приводит к перемещению воды из вещества мозга в кровь. При острой гипотонич-ности плазмы, наоборот, происходит перемещение воды из крови в вещество мозга. Чаще всего равновесие восстанавливается без особых последствий, но в ряде случаев существует опасность быстро развивающихся массивных перемещений жидкости, чреватых повреждением мозга. Следовательно, значительные нарушения концентрации натрия или глюкозы в плазме нужно устранять медленно (см. гл. 28). Маннитол, осмотически активное вещество, которое в физиологических условиях не пересекает гематоэнцефалический барьер, вызывает устойчивое уменьшение содержания воды в мозге и часто используется для уменьшения объема мозга.

Целостность гематоэнцефалического барьера нарушают тяжелая артериальная гипертензия, опухоли мозга, ЧМТ, инсульт, инфекции, выраженная гиперкапния, гипоксия, устойчивая судорожная активность. При этих состояниях перемещение жидкости через гематоэнцефалический барьер определяется не осмотическим градиентом, а гидростатическими силами.

Цереброспинальная жидкость

Цереброспинальная жидкость находится в желудочках и цистернах головного мозга, а также в суб-арахноидальном пространстве ЦНС. Главная функция цереброспинальной жидкости — защита мозга от травмы.

Большая часть цереброспинальной жидкости вырабатывается в сосудистых сплетениях желудочков мозга (преимущественно в боковых). Некоторое количество образуется непосредственно в клетках эпендимы желудочков, а совсем небольшая часть — из жидкости, просачивающейся через периваскулярное пространство сосудов мозга (утечка через гематоэнцефалический барьер). У взрослых образуется 500 мл цереброспинальной жидкости в сутки (21 мл/ч), в то время как объем цереброспинальной жидкости составляет только 150 мл. Из боковых желудочков цереброспинальная жидкость через межжелудочковые отверстия (отверстия Монро) проникает в третий желудочек, откуда через водопровод мозга (сильвиев водопровод) попадает в четвертый желудочек. Из четвертого желудочка через срединную апертуру (отверстие Мажанди) и боковые апертуры (отверстия Люшка) цереброспинальная жидкость поступает в мозжечково-мозговую (большую) цистерну (рис. 25-3), а оттуда — в субарахноидальное пространство головного и спинного мозга, где и цир кулирует до тех пор, пока не всасывается в грануляциях паутинной оболочки больших полушарий. Для образования цереброспинальной жидкости необходима активная секреция натрия в сосудистых сплетениях. Цереброспинальная жидкость изото-нична плазме, несмотря на более низкую концентрацию калия, бикарбоната и глюкозы. Белок поступает в цереброспинальную жидкость только из перивас-кулярных пространств, поэтому его концентрация очень невелика. Ингибиторы карбоангидразы (аце-тазоламид), кортикостероиды, спиронолактон, фу-росемид, изофлюран и вазоконстрикторы уменьшают выработку цереброспинальной жидкости.

Цереброспинальная жидкость всасывается в грануляциях паутинной оболочки, откуда попадает в венозные синусы. Небольшое количество всасывается через лимфатические сосуды мозговых оболочек и периневральные муфты. Обнаружено, что всасывание прямо пропорционально ВЧД и обратно пропорционально церебральному венозному давлению; механизм этого явления неясен. Поскольку в головном и спинном мозге нет лимфатических сосудов, всасывание цереброспинальной жидкости — основной путь возвращения белка из интерстициальных и периваскулярных пространств мозга обратно в кровь.

Внутричерепное давление

Череп представляет собой жесткий футляр с нерастягивающимися стенками. Объем полости черепа неизменен, его занимает вещество мозга (80 %), кровь (12 %) и цереброспинальная жидкость (8 %). Увеличение объема одного компонента влечет за собой равное по величине уменьшение остальных, так что ВЧД не повышается. ВЧД измеряют с помощью датчиков, установленных в боковом желудочке или на поверхности полушарий головного мозга; в норме его величина не превышает 10 мм рт. ст. Давление цереброспинальной жидкости, измеренное при люмбальной пункции в положении больного лежа на боку, достаточно точно соответствует величине ВЧД, полученной с помощью внутричерепных датчиков.

Растяжимость внутричерепной системы определяют, измеряя прирост ВЧД при увеличении внутричерепного объема. Вначале увеличение внутричерепного объема хорошо компенсируется (рис. 25-4), но после достижения определенной точки ВЧД резко возрастает. Основные компенсаторные механизмы включают: (1) смещение цереброспинальной жидкости из полости черепа в субарахноидальное пространство спинного мозга; (2) увеличение всасывания цереброспинальной жидкости; (3) уменьшение образования цереброспинальной жидкости; (4) уменьшение внутричерепного объема крови (главным образом за счет венозной).

Податливость внутричерепной системы неодинакова в разных участках мозга, на нее влияют АД и PaCO2 . При повышении АД механизмы ауторе-гуляции вызывают вазоконстрикцию сосудов мозга и снижение внутричерепного объема крови. Артериальная гипотония, наоборот, приводит к ва-зодилатации сосудов мозга и увеличению внутричерепного объема крови. Таким образом, благодаря ауторегуляции просвета сосудов MK не изменяется при колебаниях АД. При повышении PaCO2 на 1 мм рт. ст. внутричерепной объем крови увеличивается на 0,04 мл/100 г.

Концепцию растяжимости внутричерепной системы широко используют в клинической практике. Растяжимость измеряют при введении стерильного физиологического раствора во внутрижелудоч-ковый катетер. Если после инъекций 1 мл раствора ВЧД увеличивается более чем на 4 мм рт. ст., то растяжимость считают значительно сниженной. Снижение растяжимости свидельствует об истощении механизмов компенсации и служит прогностическим фактором уменьшения MK при дальнейшем прогрессировании внутричерепной гипертензии. Устойчивое повышение ВЧД может вызвать катастрофическую дислокацию и вклинение различных участков мозга. Выделяют следующие виды повреждений (рис. 25-5): (1) ущемление поясной извилины серпом мозга; (2) ущемление крючка наметом мозжечка; (3) сдавленна продолговатого мозга при вклинении миндалин мозжечка в большое затылочное отверстие; (4) выпячивание вещества мозга через дефект черепа.

ВЛИЯНИЕ АНЕСТЕТИКОВ И ВСПОМОГАТЕЛЬНЫХ СРЕДСТВ НА ЦНС

Подавляющее большинство общих анестетиков благоприятно воздействует на ЦНС, снижая биоэлектрическую активность мозга. Катаболизм углеводов уменьшается, в то время как запасы энергии в виде АТФ, АДФ и фосфокреатина возрастают. Оценить эффект отдельного препарата очень сложно, потому что на него накладывается действие других средств, хирургическая стимуляция, растяжимость внутричерепной системы, АД и PaCO2 . Например, гипокапния и предварительное введение тиопентала предотвращают увеличение MK и ВЧД при использовании кетамина pi ингаляционных анестетиков. В этом разделе описано действие каждого препарата в отдельности. Итоговая табл. 25-1 позволяет оценить и сравнить влияние анестетиков и вспомогательных средств на ЦНС. В разделе также обсуждается роль миорелаксантов и средств, оказывающих воздействие на сосудистый тонус.

Ингаляционные анестетики

1. Испаряемые анестетики Метаболизм мозга

Галотан, энфлюран, десфлюран, севофлюран и изофлюран вызывают дозозависимое уменьшение метаболических потребностей мозга. Наибольшее снижение происходит при использовании изофлю-рана и энфлюрана (до 50 %), в то время как эффект галотана выражен слабее (потребность мозга в кислороде уменьшается не более чем на 25 %). Влияние десфлюрана и севофлюрана сходно с таковым у изофлюрана и энфлюрана. После того как на ЭЭГ регистрируется изолиния, дальнейшее увеличение дозы ингаляционного анестетика (в отличие от воздействия низких температур) не приводит к уменьшершю метаболических потребностей мозга. Более того, эффект анестетиков неодинаков в различных участках мозга: изофлюран угнетает метаболизм в основном в неокортексе. Энфлюран может провоцировать эпилептиформную активность на ЭЭГ, в этом случае метаболические потребности мозга значительно возрастают.

MK и внутричерепной объем крови

Ингаляционные анестетики вызывают дозозави-симую вазодилатацию мозговых сосудов и нарушение ауторегуляции мозгового кровообращения (рис. 25-6). Наиболее выраженное влияние на MK свойственно галотану: в дозе > 1 % он почти пол- ностью нарушает ауторегуляцию мозгового кровообращения. При использовании галотана MK увеличивается во всех отделах мозга. При равных МАК и АД галотан повышает MK на 200 %, а энфлюран и изофлюран — на 40 % и 20 % соответственно. В отличие от галотана, изофлюран увеличивает MK главным образом в субкортикальных участках больших полушарий, мозжечке, мосте и продолговатом мозге. По влиянию на MK десфлюран и севофлюран качественно и количественно напоминают изофлюран. Влияние ингаляционных анестетиков на MK зависит от длительности их применения: после 2-5-часовой ингаляции вышеперечисленных препаратов MK постепенно возвращается к норме.

Ингаляционные анестетики, как правило, не изменяют реакцию сосудов мозга на PaCO2 , поэтому гипервентиляция (гипокапния) способна предотвратить или уменьшить их влияние на MK. Важным фактором является временная последовательность: при использовании галотана и энфлюрана нежелательного увеличения MK можно избежать, только если гипервентиляцию начинают до ингаляции анестетика. Того же эффекта можно достичь, начав проведение гипервентиляции одновременно с подачей изофлюрана или севофлюрана. При использовании десфлюрана гипокапния менее эффективно предотвращает увеличение MK, чем применение других анестетиков.

Ингаляционные анестетики вследствие увеличения емкости вен мозга вызывают приблизительно одинаковое возрастание внутричерепного объема крови (на 10-12 %). Увеличение внутричерепного объема крови происходит параллельно повышению MK, хотя это соотношение может не иметь линейной зависимости. Гипокапния на фоне анестезии изофлюраном наиболее эффективно (по сравнению с другими анестетиками) предотвращает возрастание внутричерепного объема крови. При сниженной растяжимости внутричерепной системы увеличение внутричерепного объема крови приводит к значительному подъему ВЧД.

Нарушение сопряжения между метаболизмом мозга и MK

Как уже было сказано выше, ингаляционные анестетики нарушают нормальное сопряжение между MK и метаболизмом мозга. Сочетание сниженной потребности мозга в метаболитах и повышенного MK называют "роскошной перфузией". "Роскошная перфузия" благоприятно влияет на мозг при артериальной гипотонии, в связи с чем ингаляционные анестетики, особенно изофлюран, используют при управляемой гипотонии. При очаговой ишемии мозга ингаляционные анестетики, наоборот, способны привести к феномену обкрадывания мозгового кровотока: артериолы в ишемизи-рованных областях максимально расширены, и их диаметр уже не может увеличиться, поэтому анестетик вызывает только дополнительное расширение артериол и увеличение регионарного MK в нормальных областях в ущерб участкам с плохой перфузией.

Выработка и всасывание цереброспинальной жидкости

Ингаляционные анестетики влияют на выработку и всасывание цереброспинальной жидкости. Энфлюран увеличивает образование жидкости и препятствует ее всасыванию, что при сниженной растяжимости внутричерепной системы вызывает повышение ВЧД. Галотан препятствует всасыванию цереброспинальной жидкости и незначительно уменьшает ее образование. Изофлюран способствует всасыванию и, следовательно, является единственным ингаляционным анестетиком с благоприятным влиянием на динамику цереброспинальной жидкости.

Внутричерепное давление

Суммарный эффект ингаляционных анестетиков на ВЧД складывается из быстрого изменения внутричерепного объема крови, отсроченного влияния на образование и всасывание цереброспинальной жидкости и изменения PaCO2 . Исходя из этого, изо-флюран — наиболее подходящий ингаляционный анестетик при сниженной растяжимости внутричерепной системы. Исследования на животных показали, что десфлюран увеличивает ВЧД сильнее всех остальных ингаляционных анестетиков.

Судорожная активность

В дозах 1,5-2 МАК энфлюран может вызывать эпилептоидную активность на ЭЭГ (комплексы спайк-волна), особенно на фоне гипокапнии. Слуховые стимулы провоцируют возникновение эпи-лептоидной активности. Хотя при ингаляции изо-флюрана непосредственно перед возникновением изоэлектрической линии на ЭЭГ появляются спайки, это никогда не трансформируется в развернутую эпилептоидную активность (судороги).

К-во Просмотров: 181
Бесплатно скачать Реферат: Особенности проведения анестезиологического пособия в нейрохирургии