Реферат: Особенности психофизиологической деятельности экипажа на борту ЛА
Наиболее распространенными формами и разновидностями зрительных иллюзий пилотов являются иллюзии, вызванные искажением или полной утратой картины периферического поля зрения, связанной в первую очередь с восприятием земли или линии естественного горизонта. Для пилотов особую опасность представляют иллюзорное ощущение или ложное восприятие линии горизонта или поверхности земли. Примерами таких опасных иллюзий являются зрительные искажения, когда пилот, принимая за линию естественного горизонта наклон верхней кромки надвигающегося с одной стороны сплошного облачного фронта, непроизвольно вводит в крен самолет. Сходными являются иллюзии ложного горизонта, вызванные восприятием наклона рельефа пролетаемой местности или наклона линии полярных сияний. Хорошо известными примерами восприятия ложного горизонта по углу тангажа является пилотирование самолета в ночных условиях над береговой линией, которая в горизонтальном полете воспринимается пилотом удаляющейся под самолетом аналогично тому, как изменяется положение линии естественного горизонта при наборе высоты в дневных условиях. Это приводит к тому, что огни береговой линии ошибочно принимаются пилотом за линию горизонта и формируют у него ложное ощущение выхода самолета на большие углы тангажа. Наклон одной из стен высокогорного ущелья достаточно большой площади и протяженности может вызвать у пилота ложное восприятие положения линии естественного горизонта или неправильную оценку угла возвышения рельефа местности. Наконец, искаженные градиенты освещенности облачного покрова, когда нарушена привычная восприятию пилота структура распределения освещенности зрительного поля с доминированием просветленных зон в верхней части воздушного пространства и затемненных зон вблизи нижней кромки облака, могут вызвать у него стойкую и неодолимую иллюзию полета в перевернутом положении. Двумя наиболее известными разновидностями иллюзий искаженного градиента освещенности зрительного поля, провоцирующими подобные зрительные иллюзии, являются: 1) полет над водной поверхностью в направлении облачного фронта при низких углах возвышения солнца над линией естественного горизонта, когда в отличие от освещенного зеркала воды облачным покровом затемнен небосвод и 2) полет в облаках при низких углах возвышения солнца относительно линии того же горизонта с выраженным нарушением градиента освещенности, когда также затемнена верхняя часть небосвода.
Ночные условия полета также могут разрушить восприятие опорных ориентиров наземного пространства за счет “размывания” линии естественного горизонта, контуров рельефа местности и слияния наземных огней освещения со светом звезд, Пониженные условия освещенности ночью могут спровоцировать НПО у пилотов при производстве дозаправки в воздухе, полетах в составе группы, при использовании в полете светосигнальных устройств (ракет) и множестве других аналогичных ситуаций, когда пилот наблюдает визуальные ориентиры, которые движутся независимо от линии естественного горизонта и плоскости земной поверхности. Зрительную работу летчика в ночном полете затрудняют и световые блики на пилотажно-навигационных приборах. Особую сложность представляет выполнение захода на посадку ночью, в безориентирном пространстве, когда у летчика возникает иллюзия “черной дыры”, которая проявляется в том, что, наблюдая контуры изолированной взлетно-посадочной полосы, он производит посадку с недолетом до ее торца. Сложные метеоусловия (дождь, туман) отягощают эту иллюзию.
В целом центральное поле зрения включается в процесс пространственной ориентировки пилота, когда затрудняется или исключается деятельность его периферического поля зрения. Однако, встречаются случаи, когда центральное поле зрения доминирует над незатрудненной влиянием метеофакторов или суточных колебаний освещенности деятельностью периферического поля зрения, что в авиационной психофизиологии обозначается термином “константность зрительного восприятия”. Эта способность обеспечивает пилоту сохранность глубинного глазомера, однако взлетно-посадочные полосы зауженной ширины или лесистый покров из атипично низкорослых деревьев могут спровоцировать нарушение этой важной зрительной функции
3.4. Иллюзии приборного полета при ведении пилотом пространственной ориентировки по авиационному горизонту.
Выше было сказано, что пространственная ориентировка летчика в полете является в значительной степени метеозависимой или метеочувствительной функцией. Наземные визуальные ориентиры внекабинного пространства являются для пилота наглядными, первоприоритетными, наиважнейшими сигналами оценки своего пространственного положения. Инструментальные сигналы полета, адресуемые когнитивной сфере (по И.П.Павлову - второсигнальной системе коры больших полушарий) пилота пилотажно-навигационными приборами и дисплеями, и неспособные стать полноценной заменой воспринимаемых визуально первосигнальных стимулов при определении пространственного положения самолета, являются искусственной, навязанной условиями погоды формой отображения воздушной обстановки, когда условия пониженной видимости затрудняют или исключают его прямой визуальный контакт с землей, нарушают взаимодействие с управляемым самолетом и окружающей средой.
Авиационный горизонт является инструментальным аналогом, искусственным заменителем линии естественного горизонта и используется пилотом при переходе из режима визуального пилотирования в режим приборного полета. По конструктивному решению шкал отсчета углов крена и тангажа различают 2 основных типа названного индикатора: прямой, с неподвижным индексом самолета, отображаемого в плоскости поперечного сечения (вид с хвоста) на фоне подвижной сферической фигуры, в которой небосвод кодирован цветом светлых тонов, земля – цветом темных тонов, и обратный, в котором линия горизонта неподвижно фиксирована, а индекс самолета вращается по оси крена. Прямая индикация символически воспроизводит картину изменений линии естественного горизонта, которую пилот может наблюдать в визуальном полете в процессе оценки пространственного положения своего самолета по наземным опорным ориентирам рельефа местности. Обратная индикация в большей степени интуитивно воспроизводит летчику в кабине картину эволюций управляемого по оси крена самолета на фоне неподвижной линии естественного горизонта. Концептуальное решение обратной индикации пространственного положения самолета априорно отождествляет линию естественного горизонта с положением линии водораздела между прозрачным фонарем (лобовым остеклением) и нижней непрозрачной частью (приборной доски и бортов) кабины самолета, а вертикаль кабины – с нейтральным положением ручки (штурвала) управления летательного аппарата. Разработчики авиационного приборостроения стран Запада традиционно тяготеют к концепции прямой индикации угловых координат пространственного положения самолета, тогда как российские приборостроители при оборудовании самолетов военной авиации отдают предпочтение обратной, а точнее – смешанной или раздвоенной индикации авиагоризонта: с фиксированной линией горизонта – для отсчета в точках пересечения с цифровыми индикантами неподвижной шкалы углов крена левого или правого “крылышек” вращающегося индекса самолета, и с подвижным, расщепленным от фиксированной линии авиагоризонта центральным фрагментом, перемещающимся вместе с оцифрованными рисками шкалы тангажа барабана строго вверх или вниз относительно жестко фиксированной оси вращения индекса индекса самолета по крену – для отсчета углов тангажа. Изломанный в точках выпуска шасси поперечный профиль вращающегося по оси крена индекса самолета с отображением “вид сзади” наглядно передает летчику эволюции самолета по крену, включая полет в перевернутом положении.
Миниатюризация систем отображения полетной информации, которая получила широкое развитие и повсеместное признание в создании и внедрении на борт самолетов коллиматорных авиационных индикаторов из полупрозрачных материалов, стимулировала к жизни в авиационной психологии, особенно в последние годы, ожесточенные споры о преимуществах прямой и обратной индикации пространственного положения самолета. Сторонники каждой из концепций отстаивают преимущества одной и отрицают право на существование другой, доходя до утверждений о невозможности использования каждой из них в решении задач пространственной ориентировки летчика в полете и требований отстранять от полетов авиаспециалистов, склонных отдавать бескомпромиссное предпочтение и поддержку каждой из названных концепций.
Противоречивая оценка преимуществ и недостатков прямой и обратной индикации угловых координат пространственного положения самолета, высказываемая разными летчиками-испытателями, профессиональными пилотами военной и гражданской авиации, авиационными психологами, наводит на мысль о том, что пространственная ориентировка летчика представляет собой не простое ощущение своего положения и движения в трехмерной воздушной среде, а сложный, непрерывный, динамичный и многомерный процесс, в котором четко прорисовываются, по крайней мере, два составляющих подпространства: одно - внутри кабины и другое - за ее пределами (линия естественного горизонта). Когда условия пониженной видимости исключают визуальный контакт летчика с землей, его опорными ориентирами горизонтального положения становится линия водораздела между остеклением (верх) и непрозрачными элементами конструкции кабины (приборная доска, бортовые щитки, пол - низ) и дополняющая их вертикаль нейтрального положения ручки управления. Этот вывод подтверждается тем, в приборном полете прекращается поисково-исследовательская деятельность пилота по определению местоположения линии естественного горизонта активными движениями шейной мускулатуры и голова летчика из-за выключения шейного оптико-кинетического рефлекса перестает отклоняться по осям крена и тангажа, устанавливаясь в нейтральное положение по зрительной вертикали кабины. Именно на эти ориентиры и переключается летчик при отсчете пространственного положения пилотируемого самолета по углу крена. Данный факт находит многократное подтверждение в материалах расследования летных происшествий зарубежных исследователей, описавших немало случаев, когда оказавшись в сложном или непонятном пространственном положении в системе прямой индикации, пилот начинает “гонять” ручкой (штурвалом) подвижную линию авиагоризонта и выводит самолет на режимы полной потери управляемости. Этот же вывод подтверждается и в высказываниях отечественных испытателей авиационной техники, заметивших, что пилотирование по авиагоризонту с обратной индикацией пространственного положения самолета неизбежно сопровождается феноменом “двойной ошибки” по углу крена, когда индицируемый индексом самолета на авиагоризонте угол правого или левого крена, скажем в 25°, соответствует фактическому положению крена самолета относительно земной поверхности в 50°, что летчик обнаруживает мгновенно при переносе взора с приборной доски на наземные ориентиры. Эта ошибка заложена в самой интуитивной конструкции авиагоризонта с обратной индикацией крена, поскольку неподвижная шкала крена, как и вся приборная доска, отклоняются при вводе самолета в крен, и подвижный индекс самолета, дублируя положение гироскопического волчка, неизменно индицирует заниженные показания угла крена по прибору. Факт отсчета летчиками углов крена в точках пересечения левого или правого “крылышек” самолетного индекса на круговой шкале авиагоризонта с обратной индикацией был отслежен в моделируемом полете при использовании киносъемки движений глаз летчика с помощью взглядоотметчика японской фирмы NAC.
Таким образом, включение механизма внутрикабинной фиксации периферического поля зрения при ухудшении видимости вынуждает летчика вести отсчет пространственного положения самолета, сопоставляя положение всех подвижных индексов и стрелочных элементов дисплеев с положением визуальной горизонтали и визуальной вертикали кабины, что подтверждается, как указывалось выше, стабильной ориентацией его головы и туловища. В этой системе отсчета летчику удобнее работать с обратной индикацией пространственного положения. И, наоборот, переключение зрительного внимания летчика на определение местоположения линии естественного горизонта в визуальном полете, когда он выравнивает положение головы и глаз с линией естественного горизонта в пределах доступной ему амплитуды отклонений головы ±15°, облегчает ему оценку пространственного положения пилотируемого самолета по авиагоризонту с прямой индикацией, поскольку она совпадает с положением и движениями линии естественного горизонта. Сказанное выше дает основание предположить и заподозрить, что при пилотировании самолета в сложных метеоусловиях по коллиматорному авиационному индикатору с его миниатюрными и подвижными светящимися индикантами, сфокусированными на бесконечность, летчик также может вести отсчет пространственного положения самолета по опорным визуальным ориентирам рамы или фонаря кабины, что способно завести его в трудную ситуацию непонятного пространственного положения.
Будучи интуитивными по своему первоначальному замыслу, обе системы индикации пространственного положения самолета по авиагоризонту как с прямым, так и с обратным отображением линии естественного горизонта в полете, не в состоянии дать летчику надежное, убедительное отображение пространственного положения самолета в сложных метеорологических условиях, когда необходимо вести непрерывную пространственную ориентировку, особенно при пилотировании на больших углах атаки. Можно предположить лишь, что интуитивное представление пространственного положения самолета по авиагоризонту с прямой индикацией наклона линии естественного горизонта в большей степени соответствует ситуации выхода самолета из приборного полета в режим визуального, тогда как интуитивное отображение пространственного положения самолета по авиагоризонту с обратной индикацией соответствует ситуации перехода самолета из визуального полета в режим пилотирования по приборам. Однако несовершенство двухмерного отображения пространственного положения самолета на авиагоризонте с прямой и обратной индикацией углов крена вынуждает л