Реферат: Особливості операційних систем реального часу
У звичайних ГР при використанні механізму сегментації пам'яті для боротьби з фрагментацією застосовується процедура ущільнення після збирання сміття. Однак такий підхід непридатний в середовищі реального часу, оскільки під час ущільнення переміщувані задачі не можуть виконуватися, що веде до непередбачуваності системи. У цьому полягає основна проблема застосовності об'єктно-орієнтованого підходу до систем реального часу. До тих пір, поки проблема ущільнення не буде вирішена, C + + і JAVA залишаться не самим кращим вибором для систем жорсткого реального часу.
У системах жорсткого реального часу зазвичай застосовується статичний розподіл пам'яті. У системах м'якого реального часу можливо динамічний розподіл пам'яті, без віртуальної пам'яті і без ущільнення.
5. Переривання
При описі управління переривань зазвичай розрізняють дві процедури, а саме:
програма обробки переривання (ISR - interrupt servicing routine) - програма низького рівня в ядрі з обмеженими системними викликами,
потік обробки переривання (IST - interrupt servicing thread) - потік рівня програми, який управляє перериванням, з доступом до всіх системним викликам.
Зазвичай ISR реалізуються виробником апаратури, а драйвери пристроїв виконують управління переривань за допомогою IST. Потоки обробки переривань діють як будь-які інші потоки і використовують ту ж саму систему пріоритетів. Це означає, що проектувальник системи може надати IST більш низький пріоритет, ніж пріоритет потоку програми.
6. Годинники і таймери
У ОСРВ використовуються різні служби часу. Операційна система відстежує поточний час, в певний час запускає завдання і потоки і припиняє їх на певні інтервали. У службах часу ОСРВ використовуються годинник реального часу. Зазвичай використовуються високоточні апаратні годинник. Для відліку часових інтервалів на основі годин реального часу створюються таймери.
Для кожного процесу й потоку визначаються годинник процесорного часу. На базі цих годин створюються таймери; які вимірюють перевитрата часу процесом або потоком, дозволяючи динамічно виявляти програмні помилки або помилки обчислення максимально можливого часу виконання. У високонадійних, критичних до часу системах важливо виявлення ситуацій, при яких завдання перевищує максимально можливий час свого виконання, тому що при цьому робота системи може вийти за рамки допустимого часу відгуку. Годинники часу виконання дозволяють виявити виникнення перевитрати часу й активізувати відповідні дії по обробці помилок.
Більшість ОСРВ оперують відносним часом. Щось відбувається "до" і "після" деякого іншої події. У системі, повністю керованої подіями, необхідний часовий механізм (ticker), тому що там немає квантування часу (time slicing). Однак, якщо потрібні тимчасові мітки для деяких подій або необхідний системний виклик типу "чекати одну секунду", то потрібний тактовий генератор і / або таймер.
Синхронізація в ОСРВ здійснюється за допомогою механізму блокування (або очікування) до настання деякого події. Абсолютна час не використовується.
Реалізації в ОСРВ інших концептуальних абстракцій подібні їх реалізація в традиційних ОС.
7. Стандарти ОСРВ
Великі розходження в специфікаціях ОСРВ і величезна кількість існуючих мікроконтролерів висувають на передній план проблему стандартизації в області систем реального часу.
Найбільш раннім і поширеним стандартом ОСРВ є стандарт POSIX (IEEE Portable Operating System Interface for Computer Environments, IEEE 1003.1). Початковий варіант стандарту POSIX з'явився в 1990 р. і був призначений для UNIX-систем, перші версії яких з'явилися в 70-х роках минулого століття. Специфікації POSIX визначають стандартний механізм взаємодії прикладної програми і операційної системи і в даний час включають набір більш ніж з 30 стандартів. Для ОСРВ найбільш важливі сім з них (1003.1a, 1003.1b, 1003.1c, 1003.1d, 1003.1j, 1003.21, 1003.2h), але широку підтримку в комерційних ОС отримали тільки три перших.
Незважаючи на явно застарілі положення стандарту POSIX і велику затребуваність оновлень стандартизації для ОСРВ, помітного просування в цьому напрямку не спостерігається.
Деякі найбільш успішні компанії в області систем реального часу оголошують про своє рішення прийняти в якості стандарту специфікації одній зі своїх просунутих ОСРВ. Так вчинила компанія TRON (the RTOS Nucleus), яка в 1987р. випустила в світ перші ITRON специфікації - ITRON1. Далі в 1989р. вона розробила і випустила специфікації μITRON для 8 - і 16 - бітових мікроконтролерів, а також специфікації ITRON2 для 32-бітових процесорів. ОСРВ ITRON описується нижче у відповідному розділі. Цей стандарт є дуже поширеним в Японії.
Військова і аерокосмічна галузі висувають жорсткі вимоги до обчислювальних засобів, що впливає на ступінь безпеки цільової системи. В даний час є такі стандарти для ОСРВ в авіації - стандарт DO-178B і стандарт ARINC-653. Оскільки ці стандарти розроблені в США, варто відзначити ще європейський стандарт ED-12B, який є аналогом DO-178B.
Поширеним також є стандарт OSEK / VDX [OSEK], який спочатку розвивався для систем автомобільної індустрії.
POSIX
Стандарт POSIX був створений як стандартний інтерфейс сервісів операційних систем. Цей стандарт дає можливість створювати Переносимі програми. Згодом цей стандарт був розширений особливостями режиму реального часу [POSIX].
Специфікації POSIX задають стандартний механізм взаємодії програми і ОС. Необхідно відзначити, що стандарт POSIX тісно пов'язаний з ОС Unix; тим не менш, розробники багатьох ОСРВ намагаються витримати відповідність цьому стандарту. Відповідність стандарту POSIX для ОС і апаратної платформи повинне бути сертифіковане за допомогою прогону на них тестових наборів [POSIXTestSuite]. Однак, якщо ОС не є Unix-подібної, витримати це вимога стає непростим завданням. Тестові набори існують тільки для POSIX 1003.1a. Оскільки структура POSIX є сукупністю необов'язкових можливостей, постачальники ОС можуть реалізувати лише частина стандартного інтерфейсу, і при цьому говорити про POSIX-компліантності своєї системи.
Незважаючи на те, що стандарт POSIX виріс з Unix'а, він зачіпає основоположні абстракції операційних систем, а розширення реального часу застосовні до всіх ОСРВ.
До теперішнього часу стандарт POSIX розглядається як сімейство споріднених стандартів: IEEE Std 1003.n (де n - це номер).
Стандарт 1003.1a (OS Definition) містить базові інтерфейси ОС - підтримку єдиного процесу, підтримку багатьох процесів, управління завданнями, сигналами, групами користувачів, файловою системою, файловими атрибутами, управління файловими пристроями, блокуваннями файлів, пристроями вводу / виводу, пристроями спеціального призначення, системними базами даних, каналами, чергами FIFO, а також підтримку мови C.
Стандарт 1003.1b (Realtime Extensions) містить розширення реального часу - сигнали реального часу, планування виконання (з урахуванням пріоритетів, циклічне планування), таймери, синхронний і асинхронний ввід / вивід, ввід / вивід з пріоритетами, синхронізація файлів, блокування пам'яті, колективна пам'ять, передача повідомлень, семафори. Щоб стати POSIX-компліантной, ОС повинна реалізувати не менше 32 рівнів пріоритетів. POSIX визначає три політики планування обробки процесів:
· SCHED_FIFO - процеси обробляються в режимі FIFO і виконуються до завершення,
· SCHED_RR - round robin - кожному процесу виділяється квант часу,