Реферат: Остроградский

Открытие формулы преобразования тройного интеграла в двойной помогло Остроградскому решить проблему варьирования п- кратного интеграла, именно, вывести понадобившуюся там общую формулу преобразования интеграла от выражения типа дивергенции по п- мерной области и интеграл по ограничивающей ее сверхповерхности S с уравнением L(x,y,z,…)=0. Если придерживаться прежних обозначений, то формула имеет вид

(3)

Впрочем, Остроградский не применял геометрических образов и терминов, которыми пользуемся мы: геометрия многомерных пространств в то время еще не существовала.

В “Мемуаре об исчислении вариаций кратных интегралов” рассмотрены еще два важных вопроса теории таких интегралов. Во-первых, Остроградский выводит формулу замены переменных в многомерном интеграле; во-вторых, впервые дает полное и точное описание приема вычисления п- кратного интеграла с помощью п последовательных интеграций по каждой из переменных в соответствующих пределах. Наконец, из формул, содержащихся в этом мемуаре, легко выводится общее правило дифференцирования по параметру многомерного интеграла, когда от этого параметра зависит не только подынтегральная функция, но и граница области интегрирования. Названное правило вытекает из наличных в мемуаре формул настолько естественным образом, что позднейшие математики даже отождествляли его с одною из формул этого мемуара.

Замене переменных в кратных интегралах Остроградский посвятил специальную работу. Для двойного интеграла соответствующее правило вывел с помощью формальных преобразований Эйлер, для тройного – Лагранж. Однако, хотя результат Лагранжа верен, рассуждения его были не точными: он как бы исходил из того, что элементы объемов в старых и новых переменных – координатах – между собою равны. Аналогичную ошибку допустил вначале в только что упомянутом выводе правила замены переменных Остроградский. В статье “О преобразовании переменных в кратных интегралах” Остроградский раскрыл ошибку Лагранжа, а также впервые изложил тот наглядный геометрический метод преобразования переменных в двойном интеграле, который, в несколько более строгом оформлении, излагается и в наших руководствах. Именно, при замене переменных в интеграле по формулам , , область интегрирования разбивается координатными линиями двух систем u=const, v=const на бесконечно малые криволинейные четырехугольники. Тогда интеграл можно получить, складывая сначала те его элементы, которые отвечают бесконечно узкой криволинейной полосе, а затем, продолжая суммировать элементы полосами, пока они все не будут исчерпаны. Несложный подсчет дает для площади, которая с точностью до малых высшего порядка может рассматриваться как параллелограмм, выражение , где , выбирается так, чтобы площадь была положительной. В итоге получается известная формула

.

Так дифференциальное выражение , которое Эйлер формально подставлял вместо dydx, а следуя рассуждениям Лагранжа для трехмерного случая, нужно было бы считать равным dydx, приобрело у Остроградского простой и ясный геометрический смысл.

Дифференциальные уравнения.

В теории обыкновенных дифференциальных уравнений заслуживают внимания два результата Остроградского. В «Заметке о методе последовательных приближений», предложен метод решения нелинейных уравнений с помощью разложения в ряд по малому параметру, позволяющей избегать так называемых вековых членов, содержащих аргумент вне тригонометрических функций. Такие члены нередко появляются при употреблении обыкновенных приемов интегрирования с помощью степенных рядов; неограниченно возрастая вместе с аргументом, они порождают ошибочные приближения, а содержащее их решение оказывается неподходящим.С этим явлением встречались еще астрономы XVIII в. и задачей уничтожения вековых членов занимались Лаплас, Лагранж и другие. Свой метод, основанный на одновременном разложении по параметру как самого решения, так и периода входящих в него периодических функций, Остроградский кратко пояснил на примере:

, ,

который записал в несколько иной форме:

,

совпадающей с данным уравнением при . Решение с точностью до величин первого порядка относительно , найденное обычным способом, содержит вековой член:

;

решение по способу Остроградского от него свободно:

, .

Найденное приближение Остроградский сопоставил с точным решением уравнения в эллиптических функциях Якоби. Остроградский ограничился получением первого приближения; в конце статьи он высказал намерение приложить этот метод к движению планет вокруг Солнца. Намерение это, видимо, не осуществилось, но как раз в работах по определению орбит небесных тел идея Остроградского получила дальнейшее развитие. Одним из первых таких трудов явилось исследование по теории возмущений шведского ученого А. Линдстедта, работавшего в 1879 – 1886 гг. в Дерптском университете. За этим последовали глубокие исследования А. Пуанкаре и А. М. Ляпунова и, уже в советский период, Н. М. Крылова, который применил к нему и другим, более общим классам линейных неоднородных уравнений второго порядка, содержащих малый параметр, несколько модифицированный им метод Ляпунова. В настоящее время метод малого параметра широко применяется к исследованию нелинейных задач механики, физики и техники.

Небольшая “Заметка о линейных дифференциальных уравнениях” Остроградского (1839) содержит классическую теорему, которая излагается теперь в любом курсе дифференциальных уравнений. Дано уравнение

.

и п его решений , которые предполагаются линейно независимыми. Согласно теореме Остроградского определитель

выражается через коэффициент при (п-1)- й производной:

,

где а – постоянная. Мы называем определитель по имени впервые рассмотревшего его (в другой связи и более общей форме) польского математика Г. Вронского (1812). Та же теорема была одновременно получена из несколько иных соображений Ж. Лиувиллем (1838).

Некоторые работы Остроградского были связаны с конкретными задачами современной ему военной техники. Так, например, в 1839-1842 гг. он по поручению артиллерийского ведомства занимался изучением стрельбы эксцентрическими сферическими снарядами, у которых центр фигуры отличен от центра инерции. Этому вопросу Остроградский посвятил три небольшие статьи, из которых одна содержала таблицы интегралов, нужных для решения задачи о движении снаряда в воздухе при квадратичном законе сопротивления. К работам по баллистике в свою очередь примыкали исследования Остроградского по приближенным вычислениям, в том числе и упоминавшаяся работа 1839 г., содержащая вывод остаточного члена формулы суммирования Эйлера-Маклорена.

План :

1. Жизненный путь М. В. Остроградского.

2. Кратные интегралы.

3. Дифференциальные уравнения.

К-во Просмотров: 393
Бесплатно скачать Реферат: Остроградский