Реферат: Отраслевые особенности природопользования

§ 3.1. Общая характеристика свойств и состояния массива

Свойство горной породы - присущее ей качество, которое характеризует ее структуру или реакцию на внешнее воздействие.[15] Свойство может выражаться численным показателем, т. е. свойство имеет меру. В поиске, разведке, добыче и обогащении полезных ископаемых наиболее широко используют плотностные, коллекторские, механические, электрические, электромагнитные и акустические свойства.

Плотностные свойства характеризуют вещества в каком-либо объеме. Их используют при учете добычи полезных ископаемых, в расчетах транспортирования угля и горных пород, а также обогащения.

Знание механических свойств горных пород позволяет правильно выбрать технологию и средства механизации процессов добычи и обогащения полезных ископаемых. От механических свойств горных пород зависит выбор способа крепления и управления кровлей в очистном забое или проведения горной выработки.

Электрические свойства горных пород используют для разведки полезных ископаемых. Для этого в разведочных скважинах помещают электроды и пропускают через них электрический ток. По его величине рассчитывают удельную электрическую проводимость горной породы и по ней определяют тип горной породы. Так получают разрез горных пород по скважине. По замерам в нескольких скважинах определяют структуру залегания пластов и пород на данном месторождении. Электрические свойства горных пород используют также при стимулировании осушения водоносных слоев, оттаивании мерзлых пород на карьерах.

Электромагнитные свойства пород используют для установления границ рудных тел, полостей скопления соляного раствора, границ зон, опасных по горным ударам.[16]

Акустические свойства горных пород используют для определения зон, опасных по внезапным выбросам угля и газа, устойчивости целиков, границ между угольным пластом и вмещающими породами, трещиноватости и нарушенности массива.

Термические (тепловые) свойства влияют на теплообмен пород с шахтным воздухом, а, следовательно, на климатические условия в горных выработках. Они используются в термическом бурении скважин на карьерах, при подземной газификации угля.

При разработке полезных ископаемых те или иные свойства горных пород проявляются в сочетании друг с другом. Комплекс свойств и технология ведения горных работ обусловливают состояние массива горных пород. В таких случаях говорят о проявлении технологических свойств массива.

Состояние массива горных пород характеризуется напряжениями, массами пород, воды и газов, содержащихся в единице объема горных пород, и температурой. Напряжение горной породы - сила, действующая на единицу площади какого-либо сечения породы. Если сила направлена перпендикулярно к рассматриваемой плоскости сечения, то напряжение называют нормальным. В случае действия силы в плоскости сечения напряжение считают касательным.

Напряжения в массиве возникают по различным причинам. Основная из них - вес вышележащих пород. Сила, вызываемая весом вышележащих пород, называется горным давлением. Напряжения в массиве от действия веса вышележащих горных пород на глубинах 800-1200 м достигают 20-30 МПа и более.[17] Такие значительные напряжения обязательно учитывают при выборе технологии ведения горных работ.

Напряжения в массиве горных пород формируются также в результате тектонических движений земной коры, землетрясений, давления газа и т. д.

На современных глубинах разработки давление метана в угольных пластах редко превышает 5-7 МПа. Наиболее высокие давления метана зарегистрированы на шахтах Донбасса (12 МПа).

Давление углекислого газа, содержащегося в угольных пластах шахт Подмосковного бассейна и Восточного Донбасса, меньше, чем давление метана. Измеренные давления углекислого газа в пластах не превышают 3,5 МПа.

С увеличением глубины залегания угольных пластов их температура возрастает по закону, близкому к линейному. В обычных условиях, где отсутствуют термические аномалии, температура горных пород, начиная с пояса постоянных температур, которые равны среднегодовым на поверхности, увеличивается примерно на 3 °С через каждые 100 м глубины. Поэтому температура пород, например, на глубине 1000 м достигает 38-42 °С. Изменения температуры пород создают в них дополнительные напряжения.[18]

В процессе разработки состояние угольных пластов и вмещающих пород меняется - перераспределяются как напряжения, так и массы пород, метана и воды. Изменяются свойства и температура массива вокруг горных выработок.

§ 3.2. Перемены в недрах

Подавляющее большинство разрабатываемых месторождений находится вблизи земной поверхности, не более чем на 300-метровой глубине (в среднем).[19] Именно из этой толщи земной коры человечество долгое время извлекало все необходимое минеральное сырье. Сегодня же потребности в нем резко возросли: понадобилось не только больше сырья - потребовались такие полезные ископаемые, в которых раньше не было нужды. Это заставляет горняков уходить в недра, вовлекать в разработку более глубокие горизонты.

В России сейчас более сотни шахт добывают уголь из пластов, лежащих в 600 метрах от поверхности. А на шахтах Донецкого бассейна первый рабочий горизонт расположен на глубине более 1000 метров. Примерно того же уровня достигли разработки на калийных рудниках в Белоруссии. Рабочие отметки некоторых рудников Кривого Рога - полтора километра. На столько же предстоит опуститься руднику «Таймырскому» Талнахско-Октябрьского месторождения.

В среднем же глубина горных работ в РФ достигла 600 метров.[20]

Интенсивное проникновение в недра началось в 50-х годах. Именно тогда горняки впервые почувствовали, что они перестают быть полноправными хозяевами недр, что в некоторых случаях они не в состоянии управлять подземными ситуациями.

Особенно опасны горные удары в рудных массивах Руда - крепкий материал, долго противостоит горному духу и, когда он высвобождается, всю энергию передаем подземным сооружениям. Уголь более пластичен, он несколько гасит силу удара.

Общий вывод: с глубиной недра ведут себя иначе, чем вблизи земной поверхности. В многовековой горной практике произошел перелом; нельзя дальше полагаться только на опыт, необходимо точнее изучить подземный мир на глубинах более 300 метров.[21]

В наши дни ситуация меняется. На глубокие горизонты первыми часто идут ученые. Следом за ними уверенно направляются в новые забои рабочие бригады. Горная наука гарантирует им спокойную работу.

Не так давно инженер-горняк обходился небольшим набором формул для расчета подземных сооружений. Сегодня он привлекает для тех же целей теорию упругости, теорию пластичности, механику сплошных и дискретных сред. Это помогает ему уверенно осваивать глубокие горизонты, работать на пределе допустимых воздействий на недра.

§ 3.3. Геотехнология и природа

Проблема взаимоотношения традиционных методов добычи полезных ископаемых и окружающей природной среды становится с каждым годом все острее.[22] Она всесторонне обсуждается, исследуется специалистами, ее широко освещает периодическая печать. Но даже определенные успехи, достигнутые, скажем, в рекультивации отобранных под горные разработки земель, не могут сгладить последствий традиционной практики горного дела для природной среды. Больше того, растет и ущерб народному хозяйству. Терриконы и отвалы, возникающие вблизи шахт и карьеров, отбирают ежегодно десятки тысяч гектаров пахотных земель. Ветер легко разрушает эти искусственные холмы, уносит пыль и вредные вещества на окрестные поля, в результате снижается их урожайность. Подземные горные выработки шахт, которые часто распространяются на десятки километров, затрудняют, а подчас и полностью исключают строительство на поверхности Земли. Колоссальные воронки современных карьеров - это не только чисто внешние раны, обезображивающие землю. Они ведут иногда к серьезным изменениям гидрогеологических условий больших районов, например к понижению уровня подземных вод.

Геотехнология имеет в этом смысле немало преимуществ. Если традиционные методы добычи полезных ископаемых иногда уподобляют хирургическому вмешательству в сложный организм природы, то геотехнологические методы сравнивают с терапией в медицине. Геотехнология, уходя из района месторождения после его отработки, не оставляют практически никаких видимых нарушений поверхности земли, не разрушают плодородных слоев почвы.

С другой стороны, нет никаких оснований и идеализировать геотехнологические методы с точки зрения их взаимоотношения с окружающей средой. Как и терапия в медицине, геотехнология при неумелом, недостаточно продуманном применении может обернуться многими нежелательными последствиями. Над огромными подземными пустотами, образованными, скажем, подземным растворением солей или выплавкой серы, возможны деформации вышележащего горного массива и проседание поверхности земли. Инструменты геотехнологии тоже весьма агрессивны - кислоты, щелочи, микроорганизмы. Ими могут загрязняться и поверхностные и подземные воды. При геотехнологических методах подчас неизбежно выделение вредных газов, которые грозят загрязнением атмосферы.

К-во Просмотров: 312
Бесплатно скачать Реферат: Отраслевые особенности природопользования