Реферат: Оценка эффективной высоты и потолка подъема дымового факела от высотного точечного источника выбросов вредных примесей
В г. Бишкек загрязнение воздушного бассейна вредными примесями происходит от различных точечных источников. Это трубы промышленных предприятий, ТЭЦ-1, разбросанных по всему городу котельных, которые работают на твердом топливе, выхлопные трубы автомобилей и др. По оценочным данным в воздушный бассейн г. Бишкек ежесуточно выбрасывается около 80т. золы и пыли, сернистого газа, окислов азота [6].
Рассмотрим согласно справочнику [6], климатические условия г. Бишкек, при которых осуществляется выброс примесей от труб ТЭЦ-1, при этом основное внимание уделим зимнему сезону, так как именно в этом сезоне осуществляется максимальный выброс вредных примесей в атмосферу.
Сезоны года, установленные по астрономическим признакам для всего полушария, не всегда соответствуют началу сезонов в том или ином районе. В связи с этим в климатологии границы сезонов определяются по датам перехода средней суточной температуры воздуха через определенные пределы, а также по некоторым другим критериям.
За начало и конец зимы для районов Средней Азии принято считать переход средней суточной температуры воздуха через 0о С в сторону понижения и повышения. Зима в Бишкеке начинается в последней пятидневке ноября и длится по февраль включительно. Начало зимы совпадает с резким уменьшением притока солнечного тепла и появлением снежного покрова. В отдельные годы даты начала и окончания зимы могут на 20-30дней отклоняться от средних дат.
Самый холодный месяц зимы – январь. Средняя месячная температура воздуха в январе -5.6о С, средняя минимальная температура января -10.5о С мороза, а абсолютный минимум -38о С (отмечался в декабре 1930г.)
Сумма отрицательных температур за зимний период составляет 365о С. Обычным для зимы являются дневные оттепели - в среднем до 18 дней в месяц. Максимальная (дневная) температура в такие периоды может достигать 20о С; возможны дни с положительной температурой (2-4дня за месяц). Наибольший период без оттепелей составляет 30дней. В такие периоды даже дневная температура воздуха не превышает 0о С. Иногда похолодания настолько сильны, что в течение 8 дней и более средняя суточная температура воздуха оказывается ниже -25о С (декабрь 1954г., январь 1955 г.).
В отдельные годы аномально холодная или аномально теплая погода может удерживаться в течение всей зимы. Такие зимы наблюдаются один-два раза за 10лет. Отклонения в сторону низких температур больше, чем в сторону высоких. Это связано с затратами тепла на таяние снежного покрова при потеплениях в зимний период. В летний период положительные и отрицательные отклонения от нормы равновелики.
Положение г. Бишкек в центральной части Чуйской долины, образованной Кыргызским хребтом (на юге) и Чу-Илийскими горами (на севере), во многом определяют особенности ветрового режима города. Из-за значительной шероховатости подстилающей поверхности, г. Бишкек характеризуется слабыми скоростями ветра [6] (табл.1).
Таблица 1
Повторяемость различной скорости по градациям (в % от общего числа случаев за год)
Скорость ветра, м/с | 0 – 1 | 2 – 3 | 4 - 5 | 6 – 7 | 8 – 9 | 10 - 11 |
Повторяемость, % | 48.7 | 43.6 | 6.3 | 0.9 | 0.3 | 0.1 |
По многолетним данным средняя годовая скорость внутри города составляет 1.9 м/c и 2.6 м/с на окраине. В целом за год в г. Бишкек преобладает южный, юго-восточный ветер. В два раза реже наблюдается восточный и западный. Ветер северного, северо-восточного и северо-западного направления наблюдается очень редко. Пятую часть всего времени в году занимают штили. Повторяемость штилей зимой достигает максимальных значений (около 25%).
Из общего числа случаев, слабые скорости ветра наблюдаются часто, скорости до 3 м/c в сумме составляют 92%. Большие скорости ветра в Бишкеке наблюдаются крайне редко, например, повторяемость скоростей 15-17 м/с составляет один раз в год, один раз в 5 лет наблюдается скорость 23 м/c, один раз в 10 лет – 25 м/c, один раз в 15 лет – 27 м/c и один раз в 20 лет – 28 м/c.
Загрязненность воздуха вредными веществами зависит, как от количества выбросов и их характеристик, так и от метеорологических условий [4,6,9]. Метеорологические условия могут благоприятствовать накоплению вредных веществ или, наоборот, способствовать рассеиванию или переносу их воздушными течениями.
Выбросы вредных примесей, поступающие из дымовых труб Бишкекской ТЭЦ-1, при нормальных метеорологических условиях обладают начальной скоростью подъема и сильно перегреты относительно окружающего воздуха. Создается такое впечатление, что источник примеси как будто приподнят над трубой. Поэтому согласно М.Е.Берлянду [4], необходимо учитывать начальный подъем примеси DН и рассматривать вместо реального источника на высоте Нтр некоторый условный источник, расположенный на более высоком уровне Нe =Н tr + DН, обычно называемый эффективной высотой. Таким образом, задача сводится к определению DН в зависимости от скорости ветра, перегрева примеси и других факторов.
Формула для расчета начального подъема дымового факела получена [1,4,9] в виде
(1)
где w0 – вертикальная скорость выброса, R0 – радиус трубы, g- ускорение свободного падения, u – скорость ветра на высоте флюгера (10м), DT – разность температур выброса из дымовой трубы и окружающего воздуха, Тв – абсолютная температура наружного воздуха. Фотографирование дымового факела нескольких мощных тепловых электростанций экспериментально подтвердило формулу (1) для дымового факела [3,7,8].
Начальный подъем примеси и эффективная высота рассчитаны для наиболее часто встречающихся скоростей ветра г. Бишкек, при постоянных параметрах источников выбросов [11] (табл.2). В качестве температуры наружного воздуха взята температура воздуха самого холодного месяца в году - января.
Таблица 2
Технические параметры дымовых труб Бишкекской ТЭЦ-1
№ труб | Высота трубы, м | Диаметр устья трубы, м | Температура смеси, о С | Температура наружного воздуха, о С |
№ | Htr | Do | Tc | Tв |
1 | 100 | 5,1 | 83,0 | -5 |
2 | 180 | 6,0 | 95,7 | -5 |
3 | 180 | 7,0 | 100,0 | -5 |
4 | 300 | 9,6 | 125,5 | -5 |
Представленные в табл. 3 расчетные материалы (при среднем градиенте dH/dT в тропосфере, равным 0.65) [1,2] наглядно показывают, что с увеличением высоты трубы (Htr ), начальной скорости выхода дымовых газов (w) и их перегрева относительно наружного воздуха (DT) эффективная высота (He ) и начальный подъем примеси (dH) значительно возрастают.
На начальный подъем примеси (DH) и эффективную высоту подъема дымового факела (Hэ ) влияет скорость ветра. С увеличением скорости ветра (DH) и (Hэ ) уменьшаются и при скорости ветра равной опасной скорости происходит интенсивное загрязнение приземного слоя от высотных источников выбросов (рис. e).
Как видно из табл. 3, DH и Hэ очень сильно зависят от скорости ветра. С усилением ветра DH значительно уменьшается. Разрушение дымового факела может происходить при высоких скоростях ветра.
Таблица 3
Характеристики начального подъема и эффективные высоты дымового факела труб Бишкекской ТЭЦ-1
u, м/с | ||||||
№ | 1 | 2 | 3 | |||
труб | DH | Hэ | DH | Hэ | DH | Hэ |
1 | 284,05 | 384,05 | 162,02 | 262,02 | 56,41 | 156,41 |
2 | 438,51 | 618,51 | 239,96 | 419,96 | 77,10 | 257,10 |
3 | 4966,62 | 676,62 | 269,39 | 449,39 | 85,00 | 265,00 |
4 | 1575,33 | 1875,33 | 779,44 | 1079,44 | 195,87 | 495,87 |
Характер связи между загрязнением атмосферы в городе и скоростью ветра в значительной степени соответствует закономерностям, установленным для источников различного типа [4,9]. Влияние данного фактора на концентрацию примесей в городском воздухе проявляется двояким образом. С одной стороны, усиление ветра способствует рассеиванию примесей в атмосфере. Очевидно, что усиление ветра, как у земли, так и на более высоких уровнях определяют вынос всей массы загрязненного воздуха за пределы города и очищению воздушного бассейна. По-видимому, в отдельных городах указанная закономерность является преобладающей.
Наряду с этим ослабление ветра приводит к увеличению подъема перегретых выбросов, который особенно значителен при штиле, и, следовательно, к уменьшению концентрации примесей в приземном слое воздуха. Результаты выполненной обработки обширного материала фактических наблюдений [9] в ряде городов СНГ показывают, что и при анализе загрязнения городского воздуха, отмеченные эффекты проявляются достаточно чётко. Обнаружены два максимума концентраций в зависимости от скорости ветра на уровне флюгера: при штиле и при скорости 4 - 7м/сек.
Результаты анализа связей между концентрациями примесей в городском воздухе и скоростью ветра соответствует имеющимся физическим представлениям и выводам теоретических исследований. Два максимума концентраций, очевидно, связаны с вкладом двух групп источников, При штиле основную роль в загрязнении воздуха играют низкие выбросы. Именно поэтому штилевой максимум наиболее выражен зимой, когда вследствии пониженного турбулентного обмена ослаблено рассеивание низких и поступление в приземной слой высоких источников выбросов.
Усиление второго максимума концентрации (при скорости ветра от 4 до 7м/с) связано с интенсивным поступлением к земле выбросов от высоких источников (рис е).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--