Реферат: Педагогика в начальных классах

Третья ситуация. Тот же объем работы выполняется двумя тракторами с соответствующей каждому производительностью. Значения всех трех величин неизвестны.

Требование (вопрос) задачи: “За сколько дней будет вспахано поле?” В нем указывается, что нужно найти одно из неизвестных значений величин, а именно время совместной работы. Это же требование должно быть сформулировано в повелительной форме: “Найти число дней, которое потребуется для вспашки поля двумя тракторами при совместной работе”.

В данной задаче пять неизвестных значений величин, одно из которых заключено в требовании задачи. Это значение величины назовем искомым .

Иногда задачи формулируются таким образом, что часть условия или все условие включены в одно предложение с требованием задачи. Например, приведенная выше задача может быть дана в такой формулировке: “На тракторе “Кировец” колхозное поле можно вспахать за 10 дней, а на тракторе на “Казахстан” – за 15 дней. За сколько дней можно вспахать это поле, если будут работать оба трактора?” В ней часть условия (“будут работать оба трактора”) помещена в предложение с требованием задачи. В следующем тексте все условие делается в одном предложении с вопросом: “За сколько дней вспашут поле тракторы “Кировец” и “Казахстан”, работая вместе, если на одном из них поле может быть вспахано за 10 дней, а на другом – за 15 дней?”

В реальной жизни довольно часто возникают самые разнообразные задачные ситуации. Сформулированные на их основе задачи могут содержать избыточную информацию, т.е. такую, которая не нужна для выполнения требования задачи. Например, в рассмотренной выше задаче для выполнения ее требования не имеют значения названия марок тракторов. Здесь важно лишь, что в задаче речь идет о двух тракторах с разной производительностью.

В задаче “Девочка нашла 10 белых и 5 подберезовиков, а мальчик 7 белых грибов. Сколько белых грибов нашли дети?” содержится избыточная информация о подберезовиках. Данное “5 подберезовиков” оказывается лишним.

На основе возникающих в жизни задачных ситуаций могут быть сформулированы и задачи, в которых недостаточно информации для выполнения требований. Так, в задаче “Найти длину и ширину участка прямоугольной формы, если известно, что длина больше ширины на 3 м” недостаточно данных для ответа на ее вопрос. Чтобы можно было решить задачу, необходимо ее дополнить недостающими данными. Такими данными может быть значение площади или некоторые данные, по которым можно было бы определить одну из искомых сторон.

Одна и та же задача может рассматриваться как задача с избыточными (недостающими) данными и как задача с достаточным числом данных в зависимости от имеющихся у решающего знаний. Например, ученик, не имеющий знаний о вспашке поля как задачу с недостающей информацией. Решить ее он сможет, если в эту задачу ввести, например, значение о площади вспахиваемого поля. При наличии знаний о дробях и действиях с ними ответить на вопрос задачи можно и не зная площади поля.

Ключ к решению задачи – это анализ ее решения, на основе которого устанавливается зависимость между данными и искомыми значениями величин.

Основной традиционный прием анализа задач – разбор от вопроса и от числовых данных. Обратим внимание на толкование этих понятий. Разбор задачи от вопроса – это суждение, которое состоит в том, чтобы подобрать два числовых значения одной или разных величин таким образом, чтобы дать ответ на вопрос задачи. Одно из значений или оба могут быть неизвестными. Для их нахождения подбираются два других, и так продолжается процесс подбора, пока не приходим к известным числовым значениям величин.

В результате такого разбора учащиеся устанавливают зависимость между числовыми значениями величин, расчленяют ее на простые задачи и составляют план ее решения. Установить связь между числовыми данными задачи и расчленить ее на ряд простых можно и путем разбора от числовых данных.

Разбор задачи от числовых данных состоит в том, что к двум числовым данным подбирается вопрос, затем к следующим двум данным, одно из которых может быть результатом первого действия, подбирается следующий вопрос. И этот процесс продолжается, пока не будет получен ответ на вопрос задачи.

В некоторой методической литературе разбор задачи от вопроса называется «аналитическим методом разбора, а разбор задачи от числовых данных – «синтетическим методом разбора». Но и первый и второй методы разбора есть анализ условия задачи, поскольку оба они направлены на расчленение составной части задачи на простые. Указанные способы разбора задач являются средством раскрытия пути их решения.

При анализе задачи от вопроса и от числовых данных можно выделить этапов. На первом этапе необходимо:

1) научить детей анализировать условие составной задачи и проводить рассуждение при ее разборе от вопроса;

2) довести до сознания учащихся, что для ответа на вопрос задачи необходимо, чтобы в ее условии было дано не менее двух числовых данных.

Достигнуть этого можно путем решения серий простых задач на все четыре действия без числовых данных, с неполными и полны­ми данными.

Затем решаются простые задачи разных видов, связанные с действиями вычитания, умножения и деления. Учитель на доске, а учащиеся в тетрадях чертят схемы. Дается установка: прямоугольники со знаком вопро­са задачи начертить длиной в две клетки и высотой в одну; на одну клетку ниже начертить два других прямоугольника так, чтобы расстояние между ними было в две клетки, и соединить их между собой отрезками.

В результате решения простых задач с графической иллюстрацией учащиеся убеждаются, что для решения задачи необходимо, чтобы в ее условии было дано не менее двух числовых данных одной или нескольких величин, а также приобретают навыки пра­вильно формулировать вопросы при анализе задачи

На втором этапе решаются задачи в два и три действия с полным анализом и его графической иллюстрацией

Таким образом, чтобы сформировать у учащихся понятие анализа составных задач и выработать умение вести рассуждение, необходимо решить значительное количество задач разной структуры. При фронтальном разборе задачи схему на доске чертит учитель, а учащиеся анализируют условие задачи. В тетрадях дети чертят схемы по указанию учителя, главным образом при ознакомлении с новым видом задач и при выполнении домашнего задания.

Схема дает наглядное представление о раз­биении составной задачи на простые и служит опорой мыслительной деятельности учащихся при анализе задачи, как от вопроса, так и от числовых данных. При этом создаются благоприятные условия для повторения ана­лиза задачи.

На третьем этапе, когда учащиеся овладели полным анализом задачи от вопроса и от числовых данных, возникают условия для дальнейшего развития абстрактного мышле­ния учащихся и повышения эффективности работы над задачей, используя неполный анализ при разборе задач.

Полный анализ задачи, решаемой в 4— 5 действий, является многословным, забирает много времени. В учебниках для начальных классов значительное количество составляют задачи с прямым указанием на выполнение действия, т. е. задачи, «прозрачные». Применение к таким задачам полного анализа тормозит движение мысли учащихся, так как большинство детей сразу могут составить план решения, если задача сокращенно записана в удобной форме. Анализ условия прозрачных задач способом разбора от числовых данных целесообразно сочетать с сокращенной записьюих условия. При этом учащиеся сначала знакомятся с содержанием задачи и затем составляют сокращенную запись одновременно с анализом ее условия. Такое сочетание дает четкое представление о полезности работы по сокращенной записи условия задачи, при которой записываются не только числа, но и математические выраже­ния, укорачивает ее запись. Предпосылкой для такой работы является умение учащихся устанавливать связь между данными и иско­мыми в простых задачах, которой они овладевают в процессе их решения в I—II классах. В зависимости от подготовки уча­щихся часто бывает полезно провести подго­товительную работу к решению составной задачи. С этой целью предлагается решить устно несколько простых задач тех видов, с которыми они будут соприкасаться при решении составной задачи. Сочетание состав­ления краткой записи условия задачи с его анализом, при котором записываются как числа, так и соответствующие выражения, дает возможность не только уяснить содержание задачи, но и выявить зависимость между числовыми значениями величина наметить порядок действий, сократить рассуждение, используя неполный анализ, при котором числовые выражения воспринимаются как известные данные.

Для учащихся, которые затрудняются составить план решения, ведется более подробный анализ.

В учебнике имеются задачи, требующие найти сумму нескольких значений одной величины, в которых каждое последующее значение больше или меньше предыдущих значений на несколько единиц. Составление сокращенной записи условия таких задач с их анализом, при котором записываются не только числа, но и выражения, не только укорачивает условие задачи, но и делает более прозрачный путь к ее решению.

Решая задачи, которые включают в себя простые задачи, сокращенная запись условия задачи, при которой записываются выражения, учащиеся не только воспроизводят знания связей между числовыми значениями простых задач, но и обогащаются знаниями о новых связях, на основе которых сочетаются простые задачи.

В курс математики начальных классов включены составные задачи, которые имеют несколько числовых значений различных величин и связанных различными зависимостями. В решении таких задач многие учащиеся затрудняются. Сокращенная запись условия задачи, при которой «прозрачные» связи зависимости между числовыми значе­ниями величин записываются с помощью математических выражений, значительно об­легчает разбор и решение задачи. При этом задача разделяется на две части: на «прозрачную» часть и часть, в которой зависимость между числовыми значениями величин дана в завуалированном виде.

При решении многих задач учащиеся допускают ошибки из-за того, что не умеют представить жизненную ситуацию, описанную в задаче, и не умеют осознать отношения между величинами.

Ко всем ли задачам нужна краткая запись? Конечно, нет. В учебниках имеются задачи с небольшими числами, кратко сформулированные, решение которых дети могут легко записать с помощью математического выражения.

Таким образом, планируя на уроке решение /составных задач, следует творчески использо­вать в работе различные методические прие­мы.

Сочетание сокращенной записи условия задачи с ее анализом, когда записываются не только числа, не и выражения, предполагаю­щие определенные действия, делают задачу более «прозрачной» в поиске ее решения. При этом создаются условия для экономии време­ни и повышения эффективности и самостоя­тельности работы учащихся. Кроме этого, возникают условия для дифференцированной работы учащихся. Дети, которые после сокращенной записи условия задачи умеют составить план решения задачи, приступают к самостоятельному его выполнению, а для учащихся, которые затрудняются, ведется более подробный анализ условия задачи с использованием наглядности.

После того как задача решена, получен ответ, не следует торопиться приступать к выполнению другого задания. Полезно подумать, попробовать найти другой способ решения задачи, осмыслить его, попытаться обратить внимание на трудности при поиске решения задачи, проанализировать неверно найденное решение, выявить новую и по­лезную для учащихся информацию.

Такой подход к обучению решению задач будет способствовать формированию приемов работы над задачей, элементов творческого мышления учащихся наряду с реализацией непосредственных целей обучения. Програм­мой по математике для начальной школы предусмотрено использование различных приемов работы, и это нашло отражение в учебниках математики. Предлагаются зада­ния: реши задачу другим способом, составь и реши обратную задачу, измени вопрос так, чтобы задача решалась в одно (два) действие и др. Каждый из приемов применяется с определенной учебной и развивающей целью. Однако такие задания выполняются в том случае, когда в учебнике дано соответ­ствующее указание. Принято считать, что развитию математического мышления и твор­ческой активности учащихся способствует решение нестандартных задач. Действитель­но, задачи такого рода вызывают у детей интерес, активизируют мыслительную дея­тельность, формируют самостоятельность, нешаблонность мышления. Но ведь почти каждую текстовую задачу можно сделать творческой при определенной методике обу­чения решению. Существуют приемы и формы организации работы при обучении младших школьников решению задач, которые, как показывает опыт, способствуют развитию творческой активности и мышления учащихся, вырабатывают стойкий интерес к решению текстовых задач и которые недостаточно часто применяются в практике работы.

Один из таких приемов работы над задачей — изменение вопроса задачи. Этот прием используется с различной дидактической целью.

Такой прием находит отражение в учебниках математики для I и II классов.

Крайне редко используется прием по изменению вопроса в III классе, несмотря на то, что применение его приносит большую пользу и позволяет более полно использовать условие той или иной задачи.

Поиск различных способов решения задачи – один из эффективных приемов, позволяющих глубже раскрыть взаимосвязь между величинами, входящими в задачу, и один из способов проверки решения задачи. Поэтому целесообразно направить деятельность учащихся на поиск решения, их сравнения и выбор рационального. Все это, несомненно, окажет положительное влияние на развитие мышления учащихся и умения решать задачи. Однако большую помощь для более глубокого осмысления взаимосвязей между величинами, входящими в задачу, окажет постановка продуманных вопросов и поиск ответов на них.

Целесообразность применения того или иного приема работы над задачей требует от учителя тщательного продумывания цели решения задачи, изучения содержания задачи, особенности ее решения.


1.2. Способы решения текстовых задач.

Решить задачу – это значит через логически верную последовательность действий и операций с имеющимися в задаче явно или косвенно числами, величинами, отношениями выполнить требование задачи (ответить на ее вопрос).

В качестве основных в математике различают арифметические и алгебраические способы решения задач. При арифметическом способе ответ на вопрос задачи находится в результате выполнения арифметических действий над числами.

Различные арифметические способы решения одной и той же задачи отличаются отношения между данными, данными и неизвестными, данными и искомым, положенными в основу выбора арифметических действий, или последовательностью использования этих отношений при выборе действий.

Решение текстовой задачи арифметическим способом – это сложная деятельность, содержание которой зависит как от конкретной задачи, так и от умений решающего. Тем не менее, в ней можно выделить несколько этапов:

1. Восприятие и анализ содержания задачи.

2. Поиск и составление плана решения задачи.

3. Выполнение плана решения. Формулировка вывода о выполнении требования задачи (ответа на вопрос задачи).

4. Проверка решения и устранение ошибок, если они есть. Формулировка окончательного вывода о выполнении требования задачи или ответа на вопрос задачи.

Следует подчеркнуть, что в реальном процессе решения задачи отмеченные этапы не имеют четких границ и не всегда выполняются одинаково полно. Так, иногда уже при восприятии задачи решающий может обнаружить, что данная задача – известного ему вида и он знает как ее решать. В том случае поиск решения не вычленяется в отдельный этап и обоснование каждого шага при выполнении первых трех этапов делает необязательной проверку после выполнения решения. Однако полное, логически завершенное решение обязательно содержит все этапы. А знание возможных приемов выполнения каждого из этапов делает процесс решения любой задачи осознанным и целенаправленным, а значит, и более успешным.

Основная цель первого этапа решения – понимание решающим в целом ситуации, описанной в задаче, понимание условия задачи, ее требование или вопроса, смысла всех терминов и знаков, имеющих в тексте.

К-во Просмотров: 342
Бесплатно скачать Реферат: Педагогика в начальных классах