Реферат: Переработка твёрдых отходов
где gср – средняя насыпная плотность материала постели, т/м3 ; В – ширина отсадочного отделения, м; uт - средняя скорость продольного перемещения материала в машине, м/с.
Обогащение в тяжелых суспензиях и жидкостях. Этот процесс заключается в разделении материалов по плотности в гравитационном или центробежном поле в суспензии или жидкости, плотность которой является промежуточной между плотностями разделяемых частиц.
Тяжелые суспензии представляют собой взвешенные в воде тонкодисперсные частицы тяжелых минералов или магнитных сплавов – утяжелителей, в качестве которых используют ферросилиций, пирит, пирротин, магнетитовый и гематитовый концентраты и другие материалы крупностью до 0,16 мм. В качестве тяжелых жидкостей используют растворы хлоридов кальция и цинка, тетрахлорида углерода, тетрабромэтана, хлорного олова и других соединений.
Для поддержания устойчивости суспензии в нее добавляют глину (до 3% от массы утяжелителя) или применяют смесь порошков утяжелителей различной плотности.
Наиболее распространенными аппаратами обогащения в тяжелых средах являются барабанные, конусные, колесные и гидроциклонные сепараторы.
Обогащение в потоках на наклонных поверхностях. Эти процессы включают обогащение на концентрационных столах, а также в струйных сепараторах, шлюзах и подшлюзах, в винтовых сепараторах и шлюзах.
Обогащение на концентрационных столах характеризуется разделением минеральных частиц по плотности в тонком слое воды, текущей по наклонной плоской деке стола, совершающей возвратно-поступательные горизонтальные движения перпендикулярно направлению движения воды.
Деки бывают трапециевидной и прямоугольной формы. На части поверхности дек в продольном направлении закрепляют параллельно располагаемые рифли (планки переменной высоты и длины), длина которых увеличивается от верхнего к нижнему краю стола – краю разгрузки легких продуктов. Пульпу разделяемого материала подают в верхний угол поверхности стола (деки). Питание деки смывной водой ведут с ее верхнего края, ниже места ввода пульпы. Частицы разделяемого материала большей плотности оседают в межрифленных пространствах и под действием колебаний наклонной деки продвигаются вдоль рифлей, достигая нерифленой части деки, где образуют веер частиц различной плотности, удаляемых раздельно. Неоседающие частицы меньшей плотности переносятся смывным потоком через рифли; их в виде раздельных продуктов отводят с поверхности концентрационного стола.
Более эффективно разделение предварительно классифицированных материалов. Оптимальное отношение длины деки L к ее ширине S определяется крупностью обогащаемых материалов. Концентрационные столы изготовляют в промышленном, полупромышленном и лабораторном исполнении в одно- и многоярусном вариантах с деками трех видов: песковые с L/S»2,5 для материалов крупностью d>1 мм, мелкопесковые (L/S=1,8; d=0,2-1 мм), шламовые (L/S£1,5; d<0,2 мм).
К основным регулируемым технологическим параметрам обогащения на столах относят число nходов деки стола в минуту и оптимальную длину l (в мм) хода, определяемые по выражениям:
n=250/, (5)
l=18, (6)
где dмакс – размер частиц, равный размеру сита, на котором остаток материала составляет 5%.
Обогащение на винтовых сепараторах и шлюзах происходит, как и на столах, в небольшой толщины (6-15 мм) потоке пульпы разделяемых материалов, подаваемой в верхнюю часть наклонного желоба. Винтовые сепараторы представляют собой неподвижные вертикальные винтообразные желоба с поверхностью специального профиля. Тяжелые частицы пульпы сосредоточиваются в желобе ближе к вертикальной оси его витков и разгружаются посредством отсекателей в соответствующие приемники. Легкие частицы концентрируются у периферийной части желоба и разгружаются в нижней части сепаратора.
Струйные сепараторы снабжены суживающимся к нижнему концу и устанавливаемым под углом 15—20° желобом или конусом. Пульпу (содержание твердого 50—60%) загружают в верхнюю часть желоба. Сокращение расстояния между стенками желоба от загрузочного конца к разгрузочному приводит к увеличению высоты потока от 1,5—2 до 7—12 мм. Частицы большей плотности концентрируются в нижних слоях потока, а меньшей плотности сосредоточиваются в верхних его слоях. Разделенные потоки частиц поступают в отдельные приемники. Производительность этих аппаратов определяется крупностью и минеральным составом обрабатываемого материала и обычно составляет 0,9—5,5 т/ч на 1 м2 рабочей площади желоба. Их можно использовать и для классификации (например, строительного песка).
Шлюзы характеризуются наличием наклонных (3—15°) лотков с укрепленными на их дне трафаретами (бруски, уголки, профилированные коврики, панцирные сетки, ткань) для задержания тяжелых частиц подаваемой в верхнюю часть лотка пульпы перерабатываемого материала. Эти аппараты могут быть неподвижными и подвижными, глубокого (высота потока до 0,4 м для переработки материалов крупностью от 20 до 100 мм и более) и мелкого (высота потока до 0,05 м для материалов крупностью до 20 мм) заполнения. Аппараты мелкого заполнения называют подшлюзками. Легкие частицы пульпы уносятся потоком через трафареты, частицы большей плотности депонируются в межтрафаретных пространствах, после заполнения которых при прекращенной подаче пульпы производят их промывку водой с последующим смывом концентрата в приемник.
Ширина шлюзов обычно составляет 0,5—1,5 м, длина 6—-20 м.
Промывка. Для разрушения и удаления глинистых, песчаных и других минеральных, а также органических примесей твердых отходов часто используют процессы их промывки (отмывки), которые проводят в промывочных машинах разнообразной конструкции (гидромониторы, барабанные грохоты, бутары, вращающиеся скрубберы, корытные мойки, аппараты автоклавного и других типов). В качестве промывочного агента наиболее часто используют воду (в ряде случаев с добавками ПАВ), иногда применяют острый пар и различные растворители.
3.2 Магнитные методы
Магнитное обогащение используют для отделения парамагнитных (слабомагнитных) и ферромагнитных (сильномагнитных) компонентов (веществ с удельной магнитной восприимчивостью выше 10-7 м3 /кг) смесей твердых материалов от их диамагнитных (немагнитных) составляющих. Сильномагнитными свойствами обладают магнетит (FeO·Fe2 O3 ), маггелит (Fe2 O3 ), ферросилиций и некоторые другие вещества. Ряд оксидов, гидроксидов и карбонатов железа, марганца, хрома и редких металлов относится к материалам со слабомагнитными свойствами. Различные породообразующие минералы (кварц, полевые шпаты, кальцит и т. п.) относятся к немагнитным материалам.
Слабомагнитные материалы обогащают в сильных магнитных полях (напряженностью Н около 800-1600 кА/м), сильномагнитные – в слабых полях (Н»70-160 кА/м). Магнитные поля промышленных сепараторов бывают в основном постоянными или переменными, комбинированные магнитные поля применяют реже.
Подлежащие магнитной сепарации материалы как правило подвергают предварительной обработке (дробление, измельчение, грохочение, обесшламливание, магнетизирующий обжиг и др.). Обычно магнитное обогащение материалов крупностью 3-50 мм проводят сухим способом, материалов мельче 3 мм – мокрым. Технология магнитной сепарации зависит прежде всего от состава подлежащего переработке материала и определяется типом используемых сепараторов. Последние обычно снабжены многополюсными открытыми или закрытыми магнитными системами, создающими различные типы магнитных полей, различаются способами питания (верхняя или нижняя подача материала), транспорта продуктов обогащения (барабанные, валковые, дисковые, ленточные, роликовые, шкивные сепараторы), характером движения обрабатываемого потока и эвакуации магнитных компонентов (прямоточные, противоточные, полупротивоточные) и другими особенностями.
Эвакуируемые из магнитного поля зерна сильномагнитных материалов вследствие остаточной намагниченности могут агломерироваться в разного вида агрегаты. С целью устранения последствий этого явления, называемого магнитной флокуляцией, используют многократное перемагничивание таких материалов в переменном магнитном поле размагничивающих аппаратов.
В процессах переработки твердых отходов широкое применение находят электромагнитные железоотделители (шкивные, подвесные, саморазгружающиеся сепараторы), предназначенные для извлечения железных и других ферромагнитных предметов из разрыхленных немагнитных материалов.
3.3 Электрические методы
Электрическое обогащение основано на различии электрофизических свойств разделяемых материалов и включает сепарацию в электростатическом поле, поле коронного разряда, коронно-электростатическом поле и трибоадгезионную сепарацию. С их помощью решают задачи обогащения, классификации и обеспыливания как рудного сырья, так и многих неметаллических материалов (тонкодисперсного кварца, формовочных песков, известняка и др.).
Электростатическая сепарация основана на различии электропроводности и способности к электризации трением (трибоэлектрический эффект) минеральных частиц разделяемой смеси. При контакте частиц обогащаемого материала с поверхностью заряженного металлического электрода всем сообщается одноименный с ним заряд, величина которого зависит от электропроводности частиц. Электропроводные частицы интенсивно приобретают значительный заряд и отталкиваются от электрода, частицы диэлектрика сохраняют свои траектории.
Сепарация в поле коронного разряда, создаваемого между коронирующим (заряженным до 20-50 тыс. В и более) и осадительным (заземленным) электродами, основана на ионизации пересекающих это поле минеральных частиц оседающими на них ионами воздуха и на различии интенсивности передачи приобретенного таким образом заряда частицами проводников, полупроводников и диэлектриков поверхности осадительного электрода. Эти различия выражаются в различных траекториях движения частиц.
Трибоадгезионная сепарация основана на различии в адгезии (прилипании) к поверхности наэлектризованных трением частиц разделяемого материала. Температура процесса сепарации существенно влияет на силу адгезии, которая усиливается или ослабляется электрическими силами, вызываемыми трибоэлектрическими зарядами. Помимо этого, на частицы действуют силы тяжести и центробежные силы, что в совокупности приводит к разделению частиц по вещественному составу и крупности. Подлежащие электрической сепарации материалы обычно подвергают подготовительным операциям (классификации, обесшламливанию, сушке, термообработке при температурах до 300 ˚С). Наиболее эффективно идет процесс сепарации при крупности частиц не более 5 мм.