Реферат: Перевод реферата "Acquaintance with geometry as one of the main goals of teaching mathematics to preschool children"

Выполнила:

студентка магистратуры

1 группы

Дунай Юлия Андреевна

(тел.: 8-029-3468595)

Научный руководитель:

кандидат педагогических наук,

доцент

Житко И.В.

Заведующая кафедрой:

доктор психологических наук,

профессор

Оловникова Н.Г.

Минск, 2009


СОДЕРЖАНИЕ

Введение

1.Исторические основы и современные тенденции обучения детей математике

2. Цели и содержание современного математического образования детей дошкольного возраста

3. Приемы ознакомления детей с геометрическими фигурами

Заключение

Список источникoв

Глоссарий


В ВЕДЕНИЕ

Знакомство с математикой у детей дошкольного возраста происходит в процессе жизни и игры. Обучение детей математике - это больше, чем традиционное обучение счету и арифметическим умениям. Оно включает множество разделов, среди которых важное место принадлежит геометрии. Дошкольники с помощью взрослых знакомятся с геометрическими фигурами и формой предметов, рисуют и создают геометрические конструкции, и радуются когда узнают и называют фигуры, которые видят. Все это относится к геометрии - области математики, которая является одной из самых естественных и интересных для детей дошкольного возраста.

Геометрия включает изучение геометрических фигур, исследование плоских и трехмерных форм и их отношений.

Знакомить детей с геометрическими фигурами можно с помощью игр, компьютера (Jensen, О'Neil, 1982), различных предметов (Julie Sarama, Douglas H. Clements), коробок, продуктов (Ellen Booth Church). Также карточные, компьютерные, настольные и другие игры помогут детям в процессе изучения геометрии.

Данная тема являет актуальной в связи с тем, что геометрические представления должны формироваться с раннего детства. Геометрические представления помогают детям ориентироваться в окружающем мире. Также они будут способствуют успешному обучению детей в дальнейшем: то, что дети познают в первые годы жизни, готовит почву для дальнейшего изучения геометрии в школе. А игровые методы призваны оказать помощь в понимании детьми сложных геометрических явлений. Они также необходимы для развития у детей эмоционально-положительного отношения, интереса к математике и геометрии.


I . ИСТОРИЧЕСКИЕ ОСНОВЫ И СОВРЕМЕННЫЕ ТЕНДЕНЦИИ ОБУЧЕНИЯ ДЕТЕЙ МАТЕМАТИКЕ

В ходе истории математические понятия и системы ­развивались в ответ на реальные проблемы. Например, ноль, который был изобретен вавилонянами приблизительно в 7 в. н.э.., представителями народа майя приблизительно в 4 в. н.э., и индусами приблизительно 8 в. н.э., сначала использовался, чтобы заполнить колонку чисел, в которых не было ни одного желательного числа. Например, 8 и 3 рядом - это 83; но если Вы хотите, чтобы число читалось как 803, и Вы помещаете что-нибудь между числами 8 и 3 (кроме пустого места), то будет более вероятно, что число будет прочитано правильно (Baroody, 1987). Когда дело дошло до подсчета, соответствия, или размышления о количестве вообще, физиологический факт существования десяти пальцев рук и ног у человека привел все культуры к своего рода десятичной системе исчисления.

Ранняя история сосредотачивается на прикладной математике и это должно быть и сегодня. Несколько сотен лет назад студента университета считали образованным, если он мог использовать свои пальцы для решения простых арифметических задач (Baroody, 1987); теперь же мы ожидаем то же самое от ребенка начальной школы. Объем математических знаний предлагающийся современным детям, стал настолько обширным и сложным, что можно легко забыть, что решение реальных проблем является окончательной целью изучения математики. Первоклассники ­в классах Сюзанны Colvin продемонстрировали эффективное выполнение заданий связанных со значимыми для детей ситуациями.

Можно вспомнить, что боле чем 300 лет назад, Я.А. Коменский указал, что маленьких детей можно научить считать, но больше времени у них займет понимание того, что означают числа. Сегодня, такие исследования, как исследование детского класса Сюзанной Колвин (Su­zanne Colvin), демонстрируют, что маленьким детям сначала нужно дать значимые ­ситуации, а затем числа, которые представляют различные компоненты и отношения в пределах ситуаций.

Влияние идей Джона Локка и Ж. Ж. Руссо также чувствуется сегодня. Джон Локк разделял популярное представление того времени о мире как о неподвижной, механической системе с совокупностью знаний для обучения. Это представление по отношению к образованию следующее. Локк описал обучение и процесс обучения ­как письмо этого мира в виде знаний на относительно «чистой доске» - мозге ребенка. В этом столетии, взгляд Локка продолжает быть популярным, особенно в математике.

Б.Ф. Скиннер, который применил это представление к философии бихевиоризма, ­назвал математику "одним из предметов тренировки". В то время как Локк ­рекомендовал развлекательные игры в процессе преподавания арифметических фактов, Скиннер развивал идею по применению обучающих машин для сопровождения тренировки, предшественников сегодняшних компьютеризированных ­математических тренировок. Один из критиков этого подхода в обучении математике, считает что, такой метод может быть полезен для запоминания чисел, например, телефонных номеров, но бессмысленны при более сложных операциях, таких как запоминание значащей информации или решение задач. Этот подход, в частности, неспособен обеспечить решение сложностей, возникающих в процессе обучения звукам и словам, одной из составляющих программы для детей дошкольного возраста (Baroody, 1987).

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 191
Бесплатно скачать Реферат: Перевод реферата "Acquaintance with geometry as one of the main goals of teaching mathematics to preschool children"