Реферат: Пьезоэлектрики

В1756 г. русский академик Ф. Эпинус обнаружил, что при нагревании кристалла турмалина на его гранях появляются электрические заряды. В дальнейшем этому явлению было присвоено наименование пироэлектрического эффекта. Ф. Эпинус предполагал, что причиной электрических явлений, наблюдаемых при изменении температуры, является неравномерный нагрев двух поверхностей, приводящий к появлению в кристалле механических напряжений. Одновременно он указал, что постоянство в распределении полюсов на определённых концах кристалла зависит от его структуры и состава, таким образом, Ф. Эпинус подошел вплотную к открытию пьезоэлектрического эффекта.

Пьезоэлектрический эффект в кристаллах был обнаружен в 1880 г. братьями П. и Ж. Кюри, наблюдавшими возникновение на поверхности пластинок, вырезанных при определённой ориентировки из кристалла кварца, электростатических зарядов под действием механических напряжений. Эти заряды пропорциональны механическому напряжению, меняют знак вместе с ним и исчезают при его снятии.

Образование электростатических зарядов на поверхности диэлектрика и возникновение электрической поляризации внутри него в результате воздействия механического напряжения называют прямым пьезоэлектрическим эффектом.

Наряду с прямым существует обратный пьезоэлектрический эффект, заключающиеся в том, что в пластине, вырезанной из пьезоэлектрического кристалла, возникает механическая деформация под действием приложенного к ней электрического поля; причём величина механической деформации пропорциональна напряжённости электрического поля.

Обратный пьезоэлектрический эффект не следует смешивать с явлением электрострикции, т. е. с деформацией диэлектрика под действием электрического поля. При электрострикции между деформацией и полем существует квадратичная зависимость, а при пьезоэффекте - линейная. Кроме того, электрострикция возникает у диэлектрика любой структуры и происходит даже в жидкостях и газах, в то время, как пьезоэлектрический эффект наблюдается только в твёрдых диэлектриках, главным образом, кристаллических.

Пьезоэлектричество появляется только в тех случаях, когда упругая деформация кристалла сопровождается смещением центров тяжести положительных и отрицательных зарядов элементарной ячейки кристалла, т. е. когда она вызывает индивидуальный дипольный момент, который необходим для возникновения электрической поляризации диэлектрика под действием механического напряжения. В структурах имеющих центр симметрии, никакая однородная деформация не сможет нарушить внутреннее равновесие кристаллической решётки и, следовательно, пьезоэлектрическими являются кристаллы только 20 классов, у которых отсутствует центр симметрии. Отсутствие центра симметрии является необходимым, но не достаточным условием существования пьезоэлектрического эффекта, и поэтому не все ацентричные кристаллы обладают им.

Пьезоэлектрический эффект не может наблюдаться в твёрдых аморфных и скрытокристаллических диэлектриках (почти изотропных), так как это противоречит их сферической симметрии. Исключение составляют случаи, когда они становятся анизотропными под влиянием внешних сил и тем самым частично приобретают свойства одиночных кристаллов. Пьезоэффект возможен также в некоторых видах кристаллических текстур.

До сих пор пьезоэлектрический эффект не находит удовлетворительного количественного описания в рамках современной атомной теории кристаллической решетки. Даже для структур простейшего типа нельзя хотя бы приближённо вычислить порядок пьезоэлектрических постоянных.

В настоящие время разработана феноменологическая теория пьезоэффекта, связывающая деформации и механические напряжения с электрическим полем и поляризацией в кристаллах. Установлена система параметров, определяющих эффективность кристалла как пьезоэлектрика. Пьезоэлектрический модуль (пьезомодуль) d определяет поляризацию кристалла (или плотность заряда) при заданном приложенном механическом напряжении; пьезоэлектрическая константа определяет механическое, возникающие в зажатом кристалле под действием электрического поля; пьезоэлектрическая постоянная g характеризует электрическое напряжение в разомкнутой цепи при заданном механическом напряжении; и, наконец, пьезоэлектрическая постоянная h определяет электрическое напряжение в разомкнутой цепи при заданной механической деформации. Эти постоянные являются родственными величинами и связанны друг с другом соотношениями, включающими в себя упругие константы и диэлектрическую проницаемость кристаллов, поэтому можно пользоваться любой из них. Наиболее употребителен пьезомодуль d. Пьезоэлектрические постоянные являются тензорами, и поэтому каждый кристалл может иметь несколько независимых пьезомодулей.

В общем виде уравнение прямого пьезоэффекта при воздействии однородного механического напряжения Tr записывается так:

Pi=dirTr,

Где Pi - компонент вектора поляризации; dir - пьезомодуль; Tr - компонент механического напряжения.

Уравнение обратного пьезоэффека записывается так:

Хi=dir*Er,

Где Xi - компонент упругой деформации; Er - компонент напряжённости электрического поля.

Каждый пьезоэлектрик есть электромеханический преобразователь, поэтому важной его характеристикой является коэффициент электромеханической связи r. Квадрат этого коэффициента представляет собой отношение энергии, проявляющийся в механической форме для данного типа деформации, к полной электрической энергии, полученной на входе от источника питания.

Во многих случаях пьезоэлектриков существенными являются их упругие свойства, которые описываются модулями упругости C (модулями Юнга Ею) или обратными величинами - упругими постоянными S.

При использовании пьезоэлектрических элементов в качестве резонаторов в некоторых случаях вводят частотный коэффициент, представляющий собой произведение резонансной частоты пьезоэлемента и геометрического размера, определяющего тип колебания. Эта величина пропорциональна скорости звука в направлении распространения упругих волн в пьезоэлементе.

В настоящие время известно много веществ (более 500), обнаруживших пьезоэлектрическую активность. Однако только немногие из них находят практическое применение.

Пьезоэлектрики - монокристаллы

Кварц. Кварц - широко распростронённый в природе минерал, ниже температуры 573 по Цельсию кристаллизуется в тригонально-трапецоэдрическом классе гексагональной сингонии. Он принадлежит к энантиоморфному классу и встречается в природе в двух модификациях: правой и левой.

По химическому составу кварц представляет собой безводный диоксид кремния (SiO2) молекулярная масса 60,06.

Кварц относится к числу наиболее твёрдых минералов, обладает высокой химической стойкостью.

Внешние формы природных кристаллов кварца отличаются большим разнообразием. Наиболее обычной формой является комбинация гексагональной призмы и ромбоэдров (пирамидальные грани). Грани призмы расширяются к основанию кристалла и имеют на поверхности горизонтальную штриховку.

Годный для использования в пьезоэлектрической аппаратуре кварц встречается в природе в виде кристаллов, их обломков и окатанных галек. Цвет от бесцветно-прозрачного (горный хрусталь) до чёрного (морион).

Обычно природные кристаллы кварца содержат в себе различные дефекты, снижающие их ценность. К числу дефектов относятся включение инородных минералов (рутил хлорит), трещины, пузыри, фантомы, голубые иглы, свили и двойники.

В настоящее время наряду с природными используются синтетические кристаллы кварца, выращиваемые в автоклавах при повышенных температуре и давлении из насыщенных диоксидом кремния щелочных растворов.

Пьезоэлектрические свойства кварца широко используются в технике для стабилизации и фильтрации радиочастот, генерирования ультразвуковых колебаний и для измерения механических величин (пьезометрия).

Турмалин. Турмалин кристаллизуется в тригонально-пирамидальном классе тригональной сингонии. Кристаллы призматические с продольной штриховкой, удлиненные, часто игольчатой формы.

По химическому составу турмалин представляет собой сложный алюмоборосиликат с примесями магния, железа или щелочных металлов (Na, Li, K).

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 218
Бесплатно скачать Реферат: Пьезоэлектрики