Реферат: Підвищення якості й експлуатаційних властивостей деталей поліграфічного обладнання
Якість поверхонь деталей з регулярним мікрорельєфом характеризується такими параметрами: відносна площа, що її займають регулярні нерівності (Fн), глибина (h), ширина (b) і висота напливів (hH) регулярної нерівності, питомий об’єм нерівності (Vк), кут сітки (α), кут напрямку (θ) нерівностей, крок по вісі (So) та по колу (Sк) нерівностей, амплітуда безперервної регулярної нерівності (А), висота елемента (R), кількість елементів на 1 мм2 площі (N), відносна площа опирання (Тр), де р – значення рівня перетину поверхні, кути напрямку розташування нерівності (β, γ), радіус закруглення заглибин (r) та виступів (r1), залишкові напруги (σ), мікротвердість (Hμ), глибина наклепу (Ннакл), фазово-структурний стан (Фс), коефіцієнт перекриття (Kn).
Вказані технологічні фактори впливають на якість поверхні та поверхневого шару деталей поліграфічного обладнання, цим самим визначаючи їх експлуатаційні властивості: зносостійкість (Zзн), маслоємність (Zм), герметичність (Zгерм), довговічність (Zд), надійність (Zн), термін служби (Zт. с), корозійну стійкість (Zк. с), коефіцієнт тертя (Zт), час припрацювання (Zпр) та ін.
В залежності від технологічних факторів ОЗО, параметрів якості поверхні й поверхневого шару деталей, експлуатаційних властивостей кожної окремої деталі поліграфічне обладнання характеризується такими параметрами: точністю позиціювання (Sт.п.), герметичністю вузлів (Sгерм),
Рис.2. Параметричне зображення технологічного процесу ОЗО.
міцністю нерухомих з’єднань (Sміцн), терміном служби (Sтерм), довговічністю (Sд), контактною жорсткістю (Sк. ж), надійністю роботи без відмов (Sн), а також продуктивністю (Sпрод).
Таким чином, технологічні процеси ОЗО деталей поліграфічного обладнання представлено у вигляді технологічної системи, де технологічні фактори ОЗО виступають у якості вхідних параметрів, характеристики якості поверхні і поверхневого шару деталей та експлуатаційні властивості деталей – проміжних параметрів, а експлуатаційні характеристики поліграфічного обладнання – вихідних параметрів.
Для цілеспрямованого керування технологічними процесами ОЗО на основі аналізу вказаної технологічної схеми розроблено алгоритм (Рис.2). Відповідно до нього, спершу вводяться вхідні дані (матеріал, твердість, шорсткість, геометричні параметри виробу, метод попередньої обробки). Потім визначається вид мікрорельєфу (шахова, циклоїдна, чотирикутна або кільцеве розташування нерівностей, відсутність, неповний або повний перетин нерівностей опуклої або увігнутої форми). Виходячи із матеріалу, геометрії поверхні, твердості виробу, що оброблюється, обирається геометрія та розраховується зусилля вдавлювання інструменту. Після цього здійснюється вибір обладнання, пристроїв та інструменту для ОЗО.
Потім, згідно до розробленого алгоритму, обирається схема обробки пласкої, циліндричної, торцевої, або фасонної поверхні (за один чи декілька проходів, по копіру, з дискретною, поперечною або поздовжньою подачею деформуючого елемента або заготовки або ін).
Виходячи з кінематичних особливостей обладнання та пристроїв призначається кількість обертів шпинделя (nш), подача заготовки (S), кількість обертів автономного двигуна (nа. е), ексцентриситет (e) та - параметр, що визначає взаємне розташування нерівностей.
Після призначення технологічних факторів визначаються параметри якості поверхні й поверхневого шару.
Рис.2. Алгоритм цілеспрямованого керування технологічними процесами ОЗО.
Спочатку визначаються глибина (h), ширина (b) регулярної нерівності й висота напливів (hн). Далі, згідно до розробленого алгоритму, визначаються кут сітки (α), крок нерівності по вісі (So), амплітуда безперервної регулярної нерівності (А), питомий об’єм нерівностей (Vк) і відносна площа, що її займають регулярні нерівності (Fн). Оскільки останній параметр є найбільш інформативним та найповніше характеризує експлуатаційні властивості деталей, то для розробленого технологічного процесу встановлено аналітичний зв’язок між режимами обробки і Fн. Це дозволяє відтворювати на поверхні необхідну за умовами експлуатації величину Fн для комбінованого технологічного процесу обробки пласких поверхонь:
де B, L – ширина і довжина деталі відповідно, hk – глибина канавки, Vпр – подача деталі.
Крім того, базуючись на статистичному підході, параметри якості поверхні й поверхневого шару, експлуатаційні властивості деталей обладнання, а також експлуатаційні характеристики обладнання можуть бути визначені за рахунок реалізації технологічної системи, яка передбачає побудову математичних моделей, що пов’язують технологічні фактори, параметри якості деталей, їх експлуатаційні властивості та експлуатаційні характеристики обладнання.
Автором запропоновано розподілити математичні моделі на шість класів (Рис.3). В першому, другому та третьому класах вхідними параметрами є технологічні фактори, а вихідними, відповідно, якість поверхні, експлуатаційні властивості деталей поліграфічного обладнання, а також експлуатаційні характеристики поліграфічного обладнання. Четвертий та п’ятий класи являють собою моделювання залежності від якості поверхні деталей поліграфічного обладнання експлуатаційних властивостей деталей обладнання і експлуатаційних характеристик поліграфічного обладнання, відповідно. До шостого класу математичних моделей віднесено залежність експлуатаційних характеристик поліграфічного обладнання від експлуатаційних властивостей його деталей.
При побудові математичних моделей використовувався індуктивний метод моделювання, що ґрунтується на принципі самоорганізації моделей. При цьому виходили з мінімального об’єму необхідної для моделювання апріорної інформації. Відомості, яких не вистачає, знаходились за допомогою перебирання великої кількості варіантів моделей за деякими зовнішніми критеріями вибору моделей: регулярність, мінімум зміщення, баланс змінних та комбінованих критеріїв. Точність прогнозування вихідного параметра моделі, відновлення значень, а також якість оптимізації і керування технологічним процесом залежить від якості вхідної статистичної інформації, яка використовується для налагодження математичної моделі.
Побудовані таким чином математичні моделі мають різні набори вхідних і вихідних параметрів, що відповідають згаданим шістьом класам математичних моделей. Для кожного вихідного параметру будувалось декілька моделей, і з них обиралась краща. Кількість моделей може бути як збільшена, так і зменшена. Однією з переваг збільшення кількості математичних моделей є те, що вони дозволяють при відсутності одного або декількох вхідних параметрів за наявності вихідного вирішення системи із декількох рівнянь визначити невідомий вхідний параметр.
В результаті реалізації технологічної системи за розробленим алгоритмом взаємні зв’язки між параметрами якості поверхні й поверхневого шару, експлуатаційними властивостями деталей поліграфічного обладнання та якістю друкованої продукції можуть бути представлені у вигляді математичних моделей.
У третьому розділі наведено методичний план роботи і умови проведення експерименту, описано розроблені і виготовлені спеціальні стенди і методики проведення експериментальних досліджень.
Рис.3. Шість класів математичних моделей --відповідно до вхідних і вихідних параметрів.
Для побудови математичних моделей і комплексного аналізу технологічних режимів застосовувалася технологія індуктивної самоорганізації моделей.
Для визначення параметрів якості поверхні й поверхневого шару використовувалися профілограф-профілометр „Калібр” моделі 201, твердометр моделі 2033 ТИР, мікроскоп БМИ, аналітичні ваги моделі ЯДВ-200. Заміри мікротвердості проведені приладом ПМТ-3.
У четвертому розділі показано, як результати теоретичних досліджень були використані при розробці технологічних процесів ОЗО деталей поліграфічного обладнання, що виготовлюються із легованих та нержавіючих сталей, чавуну, кольорових металів. Так, наприклад, під час друку передні та задні зажимні планки офсетного полотна піддаються значному навантаженню. Для підвищення їх експлуатаційних властивостей запропонована ОЗО зажимних планок з режимами: R=2,0 мм; P=300 H; n=125 об/хв; Vпр=200 мм/хв. Режими обробки для направляючих планок: P=80H; R=3,5 мм; nш=80 об/хв; Vпр=315 мм/хв.
У процесі роботи на офсетних друкарських машинах фарби та зволожуючий розчин потрапляють під гумовотканинне полотнище на офсетний циліндр. Хімічна дія цих речовин сприяє появі корозії, і, як наслідок, спостерігається погіршення фарбопередачі, поява розтискування точок, збільшується кількість дефектів зображення. Для протидії цьому запропоновано хромування офсетних циліндрів з подальшим утворенням на поверхні регулярного мікрорельєфу. Це значно підвищує корозійну стійкість вказаних деталей. Режими обробки такі: P=100 H; R=2,0 мм; nш=12,5 об/хв; nп. х=1000 об/хв; e=1,5 мм.
Для контактних кілець, що розміщені на циліндрах в друкарському механізмі офсетної друкарської машини з метою забезпечення плавності ходу циліндрів, зменшення шуму, впливу зміни навантажень, покращення якості друку запропоновано ОЗО з такими режимами: P=200 H; R=2,0 мм; n ш=30 об/хв; Vпр=1,56 мм/об; nп. х=750 об/хв; e=0,5 мм.
Також розроблено технологічний процес комбінованої ОЗО пласких деталей (зажимних планок, направляючих) поліграфічного обладнання шляхом випереджаючого пластичного деформування з наступною обробкою алмазно-абразивним інструментом. При цьому на поверхні деталі утворюють ЧРМР чотирикутного типу з глибиною введення алмазу в оброблювану поверхню, що дорівнює 0,0028-0,0070 мм, з наступною обробкою торцем чашкового алмазно-абразивного інструмента, вісь обертання якого перпендикулярна до поверхні деталі, t = hнапл + Rz / 2, де t – глибина шліфування, hнапл – висота напливів, Rz – параметр шорсткості поверхні.
ОЗО здійснювалась за допомогою розробленого пристрою для комбінованої обробки пласких поверхонь деталей, що має алмазний деформуючий і чашковий алмазно-абразивний інструмент У4К 200х20х3х32–АСМ 3/2 – 100% – БР. Інструменти закріплені у відповідних державках, встановлених у двох шпиндельних вузлах, розташованих паралельно один до одного і кінематично пов’язаних між собою з можливістю регулювання їх швидкостей обертання в залежності від матеріалу, який оброблюється.
Наведені вище технологічні процеси ОЗО дозволили підвищити зносостійкість вказаних деталей в 1,25…1,35 рази.