Реферат: Пирамида и призма

· Если одно тело содержит другое, то объём первого тела не меньше объёма второго

V=S осн *h Теорема. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы. S бок = P осн *h

Частным случаем призмы является параллелепипед – призма, основанием которой служат параллелограммы.

Основные свойства параллелепипеда:

1. Противоположные грани параллелепипеда попарно равны и параллельны.

2. Все четыре диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

3. сумма квадратов всех диагоналей параллелепипеда равна сумме квадратов всех его рёбер.

4. квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Если все грани параллелепипеда являются прямоугольниками, то параллелепипед называется прямоугольным . В нём все диагонали равны между собой.

Если боковые рёбра параллелепипеда перпендикулярны основанию, то параллелепипед является прямым .

Куб также является частным случаем призмы.

Куб есть прямоугольный параллелепипед с равными рёбрами.

Объём параллелепипеда V=S*h Объём прямоугольного параллелепипеда V=abc Объём куба V =a3 Диагональ прямоугольного параллелепипеда d 2 = a 2 + b 2 + c 2 , где d – диагональ, a , b , c – рёбра

Пирамида.

Слово «пирамида» в геометрию ввели греки,

которые, как полагают, заимствовали его

у египтян, создавших самые знаменитые

пирамиды в мире. Другая теория выводит

этот термин из греческого слова «пирос»

(рожь) – считают, что греки выпекали хлебцы,

имевшие форму пирамиды.

Определение . Пирамида – это многогранник, одна из граней которого – произвольный n – угольник A1 A2 …An , а остальные грани – треугольники с общей вершиной.

Этот n – угольник A1 A2 …An называется основанием пирамиды.
Остальные (треугольные) грани называются боковыми гранями (A2 PA3 , …, An PA1 )
Общая вершина всех боковых граней называется вершиной пирамиды (P).
Рёбра пирамиды, не принадлежащие основанию, называются её боковыми рёбрами (PA1 , PA2 , …, PAn )
Объединение боковых граней пирамиды называется её боковой поверхностью.
Перпендикуляр, проведённый из вершины пирамиды к плоскости основания, называется высотой пирамиды (РН).

Пирамида называется правильной , если её основание – правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является её высотой.

Высота боковой грани правильной пирамиды, проведённая из её вершины, называется апофемой этой пирамиды (РЕ). Все апофемы равны друг другу.

Если в основании пирамиды лежит n-угольник, то пирамида называется n -угольной .

Треугольная пирамида называется тетраэдром . Тетраэдр называется правильным , если все его рёбра равны (т.о. все грани правильного тетраэдра – равные правильные треугольники).

Некоторые свойства правильной пирамиды:

· Все боковые рёбра равны между собой

· Все боковые грани – равные равнобедренные треугольники

· Все двугранные углы при основании равны

· Все плоские углы при вершине равны

· Все плоские при основании равны

· Апофемы боковых граней одинаковы по длине

К-во Просмотров: 313
Бесплатно скачать Реферат: Пирамида и призма