Реферат: Пластичность организма как основа приспособления его к условиям среды

Все эти примеры показывают, что приобретенные и врожденные поведенческие реакции организуются содержащимися в нервной системе специальными химическими веществами, выполняющими информационную функцию. Поэтому роль НОП в приспособлении организма к условиям среды чрезвычайно велика. Конечно, полученные данные — только начало, но многообещающее и раскрывающее для науки широкие перспективы.

Роль гормонов в приспособительных реакциях

При адаптации организма к условиям среды немалое значение принадлежит гормональной регуляции обмена веществ и физиологических функций. С ролью некоторых гормонов в приспособительных реакциях организма мы уже познакомились, рассматривая гомеостатическое и адаптационно-трофическое действие катехоламинов и пермиссивное значение глюкокортикоидов, участие их в организации общего адаптационного синдрома. Но этим дело не ограничивается. К приспособительным реакциям организма имеют отношение гормоны щитовидной железы, инсулин — гормон островков поджелудочной железы, соматотропный гормон гипофиза, стероидные андрогены, выделяемые корой надпочечников и мужскими половыми железами, и мн. др. Но все они являются не непосредственными деятелями приспособления организма, а регуляторами его молекулярных основ. Они не производят, а способствуют приспособительной реакции обмена веществ, создавая для нее необходимый «фон». Действие гормонов может быть непосредственным, но чаще имеет ряд посредников. Так, вызываемое некоторыми гормонами усиление процесса транскрипции при синтезе белков происходит при участии цАМФ. Как видим, гормон, активируя аденилатциклазу, обеспечивает этим повышение в клетке уровня цАМФ, которая активирует протеипкиназу, перекосящую фосфатную группу от АТФ на гистоны — белки, связанные с ДНК и препятствующие транскрипции. Фосфорилированный гистон, отщепляясь от ДНК, делает транскрипцию возможной.

Кроме влияния на разные стороны синтеза белков гормоны обеспечивают энергетическую базу для этого синтеза. Катехоламины и соматотропный гормон при посредстве цАМФ усиливают расщепление жиров и мобилизацию жирных кислот, а первые — и расщепление гликогена, мобилизацию глюкозы. Инсулин же способствует ее утилизации в процессах обмена веществ.

Схема 6. Влияние гормона на процесс транскрипции при синтезе белка. Обозначения те же, что и на схеме 2; остальные объяснения в тексте.

Мы уже познакомились с механизмом активации расщепления гликогена и жиров под влиянием адреналина. Но в ряде случаев активация ферментов гормонами может быть сложнее, более многоступенчатой. Как видим, некоторые протеинкиназы, активирующие фермент с помощью его фосфорилирования, предварительно сами должны быть фосфорилированы. Таким образом, между активируемым ферментом и гормоном стоят три посредника: цАМФ, киназы киназ и протеинкиназы.

При этом следует иметь в виду еще два обстоятельства. Первое: при встрече организма с измененными условиями среды в кровь поступает повышенное количество не какого-нибудь одного гормона, а одновременно многих, причем в разных соотношениях: содержание одного повышается весьма значительно, другого — лишь немного, концентрация одного может возрастать резко, другого — постепенно. Создается определенный гормональный ансамбль, непохожий на то, что было при функциональном покое организма, и изменяющийся. Следовательно, каждый гормон оказывает свое влияние не изолированно, а в содружестве с другими, и конечный эффект такого совместного действия иной, чем каждого гормона в отдельности. Например, инсулин усиливает синтез гликогена в печени и мышцах и снижает содержание глюкозы в крови. Но если одновременно с повышением инсулина в крови увеличивается и содержание соматотропного гормона гипофиза, то уровень глюкозы в крови остается высоким.

Активация фермента гормоном. Ц — фосфат. Штриховые стрелки — возможность обратимости реакции после прекращения действия гормона и снижения концентрации цАМФ

Второе: длительность пребывания разных гормонов в крови неодинакова. Если одни быстро инактивируются, разрушаются и удаляются из крови, то другие в ней долго циркулируют. Так, полупериод жизни адреналина в крови 3 мин, инсулина — 10, глюкокортикоидов — 30 — 90, а тироксина — 4000—10 000 мин. К тому же многие гормоны в крови могут соединяться с белками, что делает недоступным их взаимодействие с клеточными рецепторами.

Принципиальная схема изменения содержания гормонов в крови при интенсивной мышечной деятельности, % от уровня в покое.

I — работа, II — отдых. 1 — соматотропин, 2 — адреналин и норадреналин, 3 — кортикостероиды, 4 — инсулин, 5 — тестостерон, 6 — глюкагон, 7 — тироксин.

Связанные с белками, они как бы сберегаются про запас. Под влиянием происходящих в крови изменений связь гормона с белком нарушается, и освободившийся гормон теперь может оказывать свое регулирующее действие. Кроме того, как мы уже знаем, при приспособлении организма к интенсивной мышечной деятельности увеличивается чувствительность клеточных гормонорецепторов к ряду гормонов. Вместе с тем возрастает и интенсивность обмена гормонов: их образование в эндокринных железах и расщепление на периферии. В результате организм, приспособившийся к измененным условиям, получает возможность скорее и мощнее запускать свои гормональные регуляторные механизмы, а также быстрее и энергичнее выключать их.

Нервные и гормональные влияния — пусковые и регуляторные действия. Приспособительные же изменения организма реализуются на уровне синтеза структурных и ферментативных белков, изменений их высших структур и функциональных свойств и даже приобретения возможности синтеза новых белков в случае мутаций. В результате индукции синтеза структурных и ферментных белков увеличивается количество функциональных субклеточных структур; возрастает функциональная мощность клетки, органа, а значит, и организма в целом; больше становится молекул ферментов, готовых к выполнению повышенных функциональных задач. Это наряду с изменениями регуляции активности приводит к повышению каталитической мощности ферментов в различных биохимических реакциях обмена веществ.

Такие приспособительные изменения, как возросший синтез белков и увеличение содержания в клетке того или иного белка, связаны прежде всего с деятельностью генетического аппарата клеток. Но ряд изменений свойств белков осуществляется и без его участия. Это главным образом так называемые посттранскрипционные и пострибосомные изменения синтезируемых белков. Они происходят уже после того, как первичная структура белка синтезирована. Суть этих изменений в том, что отдельные, закодированные в геноме аминокислоты под действием ферментов превращаются в их производные, не кодируемые в геноме; например, аминокислота пролин окисляется в оксипролин. Эти сдвиги структуры белков имеют существенное значение в приспособительных реакциях организма, так как позволяют ему синтезировать белки, несколько отличающиеся по структуре от закодированных в геноме, и происходит это без участия мутаций. Кроме того, изменениями формы и высших структур, а в результате и функциональных свойств синтезируемых белков являются трансформации их под влиянием биохимических сдвигов во внутренней среде организма.

В конечном итоге всякое приспособление организма к изменившимся условиям среды — процесс биохимический. Даже если приспособление находит выражение в миграции животных в более подходящую для них среду, помогая избежать возникшие неблагоприятные влияния, то в основе его лежат происходящие на молекулярном уровне биохимические процессы. Ведь основой поведенческих реакций являются биохимические изменения в нервных клетках, например образование и действие НОП.

К-во Просмотров: 111
Бесплатно скачать Реферат: Пластичность организма как основа приспособления его к условиям среды