Реферат: Пластичность организма как основа приспособления его к условиям среды
Приспособительное реагирование на изменяющиеся условия существования — одно из замечательных свойств живых организмов. В основе его лежит пластичность организма, способность к приспособительным биохимическим изменениям. Это проявляется на всех уровнях биологической организации: от одноклеточных простейших до человека, от клетки и ее субклеточных структур до целостного организма.
Биохимическая структура всякой клетки и ткани определяется информацией, заложенной в геноме клеток. Качественный состав и величина содержания структурных и ферментных белков определяются геномом, а интенсивность синтеза — условиями существования. В свою очередь состояние ферментных систем и изменения концентрации субстратов и продуктов реакций обмена веществ регулируют расходование и синтез белковых компонентов клетки. Однако в каждый данный момент возможности синтеза как белков, так и небелковых веществ реализуются не полностью. Синтез тех или иных белков может быть ограничен репрессированием определенных участков генома, но может усиливаться в результате дерепрессии или индукции, вызванной повышением функциональной активности клетки или повреждающего ее воздействия. Увеличение расщепления клеточных белков под влиянием изменения условий существования, а также концентрации продуктов обмена веществ, расходование небелковых веществ, снижение их концентрации, вызывая изменения активности ферментов, могут усиливать синтез этих веществ и повышать их концентрацию в клетке. Как видим, повреждающий фактор оказывает влияние на клеточные структуры и ферменты. Первые при этом в той или иной мере нарушаются, а вторые активируются. Под действием ферментов усиливается расходование источников энергии, а освободившиеся из клеточных структур белки в какой-то мере подвергаются расщеплению. Расщепляться при этом могут и сами ферменты. То и другое приводит к возрастанию концентрации метаболитов, которые нередко являются для генетического аппарата индукторами и дерепрессорами, т. е. способствуют отщеплению от гена репрессоров, ограничивающих синтез белков, и запускают процесс синтеза. В результате этого усиливается построение структурных и ферментных белков и восстанавливаются клеточные структуры.
Расщепление и синтез белков при действии повреждающих факторов среды. Жирные стрелки — синтез, тонкие — влияние и пути, штриховые — расщепление; остальные объяснения в тексте.
Механизм действия повреждающих факторов
Д.Н. Насонов и его сотрудники установили, что при повреждении клетки или даже при обратимом изменении ее функции и строения под влиянием повреждающего агента происходят обратимая денатурация тех или иных клеточных белков в результате нарушения в них различных связей, за исключением ковалентиых, и изменения формы молекул, а также разрыхление их. При этом химически активные группы, например карбоксилы и аминогруппы, которые находились внутри клубка белковой молекулы и были вовлечены в образование пековалентных связей, могут размаскировываться. Освободившись, эти группы увеличивают возможности новых взаимодействий как внутри самой белковой молекулы, так и с другими молекулами. Кроме того, белковые молекулы с измененными высшими структурами становятся более легкодоступными действию расщепляющих их ферментов — протспяаз. Этому способствует и происходящий сдвиг реакции внутренней среды в кислую сторону, так как большннство протеиназ имеет оптимум рН в области кислых реакций. Усиливаются расщепление гликогена с образованием в конечном итоге молочной кислоты и гидролиз фосфолипидов. Последнее наряду с изменениями состояния белков неблагоприятно отражается на проницаемости клеточных и субклеточных мембран: ока возрастает, низкомолекулярные вещества и ряд белков выходят в межклеточное пространство.
При систематическом действии альтерирующего агента, если сила его не очень велика и не вызывает необратимых изменений, постепенно повышаются устойчивость клетки к альтерирующему фактору и адаптация к нему на молекулярном и клеточном уровнях. В реализации этого приспособления главную роль шрают клеточные белки. Стойкость клетки к повреждающим агентам тем выше, чем больше ее возможности в отношении синтеза белков. Мало того, из клеток, приспособившихся к тому или иному повреждающему фактору, удалось выделить белки, более устойчивые к действию последнего. Все эти изменения белков, видимо, и лежат в основе прежде всего.
Схематическое изображение высвобождения химически активных групп при обратимой денатурации белковой молекулы и разрыве водородных, ионных и дисульфидных связей. 1-5— внутримолекулярные связи и активные группы, страдающие при их разрушении
Тем не менее, даже на молекулярном и клеточном уровнях, характер изменений, возникающих при альтерации, зависит от природы к характера альтерирующего агента, и это является основой специфического приспособления. Различия становятся еще большими, когда мы поднимаемся от клетки к более высоким степеням организации: к ткани, органу, функциональной системе и к организму как целому. Благодаря наличию универсальных связей организм реагирует на изменения условий среды как сложноинтегрированная система, обеспечивающая наиболее эффективное уравновешивание его со средой. Поэтому при приспособлении организма к изменениям условий существования наряду с общим, неспецифическим повышением устойчивости все более проявляются черты специфического приспособления. Первые являются основой и реализуются только на молекулярном и клеточном уровнях, а вторые возникают з результате коррекций, вносимых в первые высшими ступенями организации, организмом как целым, регулируемым и координируемым нервной системой, и происходят не только на молекулярном и клеточном уровнях, но и на уровне функциональных систем и целостного организма.
Мы уже говорили о том, что действие альтерирующих факторов всегда вызывает усиление катаболических процессов, т. е. расщепление сложных химических соединений на более простые. В биохимии есть правило, установленное выдающимся советским биохимиком В. А. Энгельгардтом: всякая реакция расщепления вызывает или усиливает реакцию, производяющую ресинтез. Поэтому уже во время действия альтерирующего фактора усиливаются и биосинтетические процессы — приспособительный синтез структурных и ферментных белков и восстанавливаются запасы источников энергии, расходуемые во время действия вредных факторов окружающей среды.
Роль нервной системы в приспособительных реакциях
Как показал великий русский физиолог И.П. Павлов, первая и главная роль в уравновешивании организма с окружающей средой, т. е. приспособление к ней, принадлежит нервной системе. Все влияния внешней среды воспринимаются организмом с помощью органов чувств, а внутренней среды — рецепторами внутренних органов. Сигналы от экстеро- и интерорецепторов, являющихся как бы выдвинутыми вперед разведчиками, по чувствительным нервам передаются центральной нервной системе. Там они перерабатываются, в результате чего по эфферентным нервам следует ответ на периферию, к рабочим органам: мышцам, аппарату пищеварения, легким, сердцу, сосудам и др.
Сигналы и от периферии к центру, и от центра к периферии передаются двумя способами. Первый — нервный импульс, имеющий в основном электрическую природу и потому передаваемый чрезвычайно быстро; так, реагировать на раздражение движением мы можем мгновенно. Задача импульсного проведения — быстро доставить сигнал нервной системе и столь же быстро отреагировать на него. Второй способ — неимпульсные трофические влияния. Замедленная киносъемка нервных волокон под микроскопом позволила установить, что в них все время происходит движение полужидкой аксоплазмы, окружающей нейрофибриллы, по которым передаются нервные импульсы. В чувствительных, афферентных волокнах аксоплазма движется от периферии к центру, а в эфферентных — наоборот. Движение это на много порядков медленнее проведения импульсов: от 2 мм до 40 см/сут. Характер веществ, приносимых током аксо-плазмы и через поры нервных окончаний поступающих в нервные клетки и в клетки периферических органов, изучен еще далеко не достаточно, но уже известно, что многие из них являются белками или нолипептидами. Эти вещества биологически активны, и с их помощью осуществляются влияния нервной системы на процессы обмена веществ, «настройка» органов на выполнение функции, активация и ингибирование ферментов. Вместе с тем наличие тока аксоплазмы от периферии к центру свидетельствует об аналогичных влияниях периферии на нервные клетки, способствующих формированию ответа на изменения условий среды. Естественно, что при экстренном, кратковременном приспособлении организма к этим условиям ведущее значение принадлежит быстрым, импульсным сигналам, а при приспособлении длительном все большую роль начинают играть неимпульсные трофические влияния.
Нервная система, регулируя функции, действует по принципу рефлекса: сигнал с периферии, переработка и отражение его нервной системой на периферию с соответствующим «приказом». В своем труде «Рефлексы головного мозга», вышедшем в 1863 г., отец отечественной физиологии И.М. Сеченов подчеркивал, что все акты сознательной и бессознательной жизни являются рефлексами. Рефлексы делят на безусловные и условные, открытые И.П. Павловым. Безусловные рефлексы свойственны всем организмам, имеющим нервную систему, хотя бы самую примитивную. Они являются врожденной реакцией, сохраняющейся в течение всей жизни. Сигнал от рецептора доходит до связанной с ним чувствительной нервной клетки и возбуждает ее. Возбуждение передается другим нервным клеткам в различных отделах нервной системы до коры головного мозга включительно. Но они могут осуществляться и на уровне спинного мозга, без участия высших отделов нервной системы. Следовательно, безусловные рефлексы могут быть осознанными или неосознанными.
Условные рефлексы — временные связи нервной системы со средой. Они образуются при сочетании действия безусловного раздражителя с условиями, его сопровождающими. Например, выделение пищеварительных соков у собаки только на звонок или зажигание лампочки, если эти условные раздражители на протяжении какого-то времени сопровождали получение собакой пищи. Если условный рефлекс не подкреплять, перестать сочетать безусловную реакцию с условным раздражителем, то он затухает. Это дает организму большие возможности для образования все новых и новых условных рефлексов в связи с возникновением новых раздражителей, исходящих из внешней или внутренней среды.
Условные рефлексы образуются с участием высших отделов центральной нервной системы. Они могут быть чрезвычайно сложными, так как условным раздражителем является не только какой-нибудь один фактор среды, а целый комплекс их. У человека, обладающего второй сигнальной системой, условным раздражителем могут служить и слово, и мысль, на которые образуются условные рефлексы так же, как на действие тех или иных конкретных факторов среды.
Условные рефлексы могут превращаться в натуральные условные рефлексы, более прочные, чем выработанные. Они образуются в течение жизни организма в обстановке его естественного существования при действии на организм раздражителей, постоянно сопутствующих агентам, вызывающим тот или иной безусловный рефлекс, и определяют отношение организма с внешней средой. На первый взгляд натуральные условные рефлексы похожи на безусловные. Известно, что вид и запах мяса вызывают у собаки выделение слюны. Казалось бы, это просто безусловный рефлекс. Но это не так. Советский физиолог И.С. Цитович показал, что щенки, питавшиеся до 7 мес молоком, на запах мяса не выделяют слюну. Значит, то, что наблюдается у взрослых собак, не безусловный, а натуральный условный рефлекс.
Натуральные условные рефлексы касаются самых различных функций, причем их эффекты не обязательно направлены на какую-нибудь одну функциональную систему, но чаще бывают комплексными, распространяясь на ряд функционально связанных друг с другом систем. Таким образом, простые и натуральные условные рефлексы определяют поведение животного и настраивают функции его организма на лучшее, наиболее эффективное приспособление к изменившимся условиям среды.
Еще более похожи на безусловные рефлексы различные инстинкты — сложные врожденные акты поведения живых организмов в ответ на изменения во внешней или внутренней среде. И.П. Павлов квалифицировал инстинкты как безусловные рефлексы, развившиеся из условных в процессе исторического развития. Инстинкты в значительной мере определяют поведение животных, сочетаясь с приобретенными в течение жизни условными рефлексами. При этом у насекомых, рыб и птиц большее значение имеет инстинкт; у млекопитающих преобладает условно рефлекторный элемент; у человека инстинкты подчинены большому количеству условных рефлексов, осуществляемых посредством первой и второй сигнальных систем, и проявляются они в чистом виде лишь при очень резких и сильных внешних воздействиях. Для примера можно привести такой случай. Автор этих строк во время войны однажды попал под бомбежку и обстрел кружащих над редким лесом немецких пикирующих самолетов. Чтобы как-то укрыться, он прилег возле старой осины. Когда же самолеты ушли, он обнаружил, что за время бомбежки совершенно бессознательно руками подрылся под корни осины. Голова и верхняя треть спины были в открытой пещерке, а остальная часть тела торчала наружу. Конечно, эти действия нельзя признать безусловно целесообразными, но тут сработал инстинкт самосохранения в чистом виде.
Инстинкты могут проявляться не только в сравнительно простых актах поведения, но и в сложных, весьма точных действиях. Например, осы сфексы обеспечивают питание своего потомства, запасая личинки других насекомых. Но они не убивают их, а лишь парализуют с помощью ювелирно-точного укола в один из нервных узлов, который «заведует» движением.
В отличие от условного рефлекса, нацеленного на определенную функцию, инстинктивные реакции — общие реакции организма, захватывающие различные функциональные системы: дыхание, кровообращение, движение, железы внутреннее секреции и др. Естественно, что инстинкты существенно помогают организму адаптироваться к условиям среды. Но приспособительное значение их относительно. В слишком необычных условиях целесообразность инстинкта в ряде случаев теряется, хотя при других обстоятельствах они и полезны организму. Так, осы и пчелы заделывают ячейку, куда отложено яйцо, даже если заготовленный мед для питания личинки извлечен оттуда.
Инстинкты управляются из подкорковых образований головного мозга — полосатого тела и таламуса, но, чем выше организация животного, тем большее значение приобретает контроль над его проявлением инстинктов со стороны коры головного мозга, а у человека — со стороны второй сигнальной системы. Молекулярная основа инстинктов еще не изучена, к ней наука еще только-только приближается.
В начале 70-х гг. была открыта большая группа образующихся и содержащихся в нервной системе биологически активных веществ — НОП. Эти вещества близки к белкам, но у них намного короче пептидные цепи. Образуются они из общих белковых предшественников в результате расщепления их на разных уровнях, а не путем индивидуального синтеза, как белки. В нервной системе они оказывают действие, соединяясь со специальными внутриклеточными белковыми рецепторами, и по отросткам нервных клеток током аксоплазмы могут передаваться другим нервным клеткам или попадать в периферические нервные окончания. НОП вырабатываются в гипоталамусе и гипофизе.
Функции НОП многообразны: одни необходимы для памяти и обучения; другие действуют обезболивающе; третьи регулируют состояние сна и бодрствования. Но нас интересует значение НОП для образования условных рефлексов и для формирования поведенческих реакций.
Самое замечательное, что с помощью экстракта мозга можно «переносить» от одного животного к другому приобретенные навыки, а чистыми НОП вызывать те или иные поведенческие реакции, когда окружающая среда не дает к тому поводов. Это касается не только приобретенных в течение жизни навыков, но и врожденных, генетически зафиксированных форм поведения животных. В качестве иллюстрации приведем такой опыт. Крыс в клетке с двумя коридорами приучали получать воду только из правой или левой кормушки, т. е. вырабатывали у них условный рефлекс. Если крысам, не привыкшим к этому, вводили экстракт мозга крыс, приученных пить воду справа, то и крыса-реципиент направлялась пить по правому коридору. Если же крыса-донор всегда пила слева, то и крыса-реципиент бежала к левой кормушке.
А вот другой опыт. У крыс вырабатывали условный рефлекс нажатия на правый или левый рычаг специального ящичка для получения пищи. Выработка этого рефлекса требовала очень многих сочетаний условного и безусловного раздражителей. Если экстракт мозга крыс с выработанным рефлексом вводили в мозг другим крысам, то у них тот же рефлекс образовывался всего с нескольких сочетаний.
Еще пример. У рыб вырабатывали условный рефлекс избегания темноты. Когда экстракт мозга их вводили другим рыбам, то и те сразу же начинали уплывать в освещенное пространство. Теперь известно, что избегание темноты вызывает НОП скотофобин.
А вот примеры влияния НОП на врожденные инстинктивные поведенческие реакции. Из мозга голодавших макак резусов готовили экстракт и вводили его в мозг сытым обезьянам. В результате сытые макаки проявляли пищевой инстинкт, отыскивали и раздобывали пищу. Экстракт же мозга сытых обезьян при введении его голодным тормозил пищевой инстинкт, устраняя чувство голода.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--