Реферат: Плотность жидкости при нормальной температуре кипения
82,05·650·(0,2920-0,0967·0,378)/31 = 439 см3 /моль.
Результаты расчета плотности приведены в табл.6.6 и на рис. 6.9. Для 298 К имеем:
= 298/650 = 0,458;
= 0,29607 – 0,09045·0,458 –0,04842·0,4582 = 0,244;
= 0,33593–0,33953·0,458+1,51941·0,4582 +1,11422·0,4584 = 0,354;
= 0,354·(1–0,378·0,244)·439 = 140,9 см3 /моль;
= 134,222/140,9 = 0,952 г/см3 .
Метод Йена и Вудса
Метод предназначен для прогнозирования плотностей жидкостей при любых давлениях. В приложении к плотности насыщенной жидкости метод заключается в следующем. Приведенная плотность жидкости, находящейся на линии насыщения, коррелирована с приведенной температурой:
,(6.21)
где - мольная плотность насыщенной жидкости,
- критическая плотность вещества,
- приведенная температура.
Коэффициенты являются функциями критического коэффициента сжимаемости и вычисляются по уравнениям
;(6.22)
при
;(6.23)
при
;(6.24)
;(6.25)
.(6.26)
Пример 6.5
Методом Йена и Вудса рассчитать плотность жидкого изобутилбензола, находящегося на линии насыщения в диапазоне 298-650 К. Критический коэффициент сжимаемости изобутилбензола равен 0,28, критический объем составляет 480 см3 /моль.
Решение
1. Вычисляем значения коэффициентов Kj :
;
;
;
.
2. Критическая плотность изобутилбензола:
г/см3 .
3. Рассчитываем плотность жидкого изобутилбензола, находящегося на линии насыщения. Для 298 К имеем
=0,8056 г/см3 .
Фрагмент результатов расчета при других температурах приведен в табл. 6.6., на рис. 6.9. дается сопоставление их с полученными методом Ганна-Ямады и другими методами.