Реферат: Подготовительные процессы оптимизации состава полимерной композиции

Агрегаты типа ЭЧД позволяют изготавливать однородный и воспроизводимый от партии к партии продукт, осуществлять достаточно точный контроль и эффективное управление параметрами технологического процесса, устанавливать высокий уровень автоматизации процесса переработки, обеспечивать непрерывное получение изделий из композиционных полимерных материалов, перерабатывать высоконаполненные, термочувствительные и термодинамически несовместимые полимеры.

Качество смешения и интенсивность процесса переработки повышается .при использовании композиций с нанесенным на базовый полимер дозированным количеством дисперсного наполнителя.

Перспективным способом дозирования наполнителя при получении композиционных полимерных материалов является дражирование в тарельчатых аппаратах с последующей подачей полученных гранул в приемное устройство литьевой машины или экструдера, оснащенного червяком с зоной диспергирования. Такой способ грануляции позволяет вести процесс при комнатной температуре, он весьма прост и отличается малой металло-и энергоемкостью.

В этом случае для дозирования наполнителя и грануляции используются тарельчатые (дисковые или чашевые) аппараты — дражираторы. Основной частью такого аппарата является тарелка (чаша, диск), вращающаяся вокруг оси, угол которой относительно вертикали регулируется в пределах 15—30°.

В дражираторе могут подвергаться смешению и грануляции различные порошкообразные продукты (дисперсные наполнители, минеральные и органические при разном их соотношении, порошкообразные и гранулированные термопласты). В них возможно осуществлять и дозированное нанесение дисперсных наполнителей или их смесей на гранулы полимера с последующим диспергированием в одном из видов червячного оборудования.

Простота конструкции и эксплуатации дражиратора, его высокая: производительность и низкая стоимость, хорошее качество получаемых гранул, отсутствие механодеструктивных процессов ввиду того, что в дражираторе гранулирование осуществляется при комнатной температуре (это особенно важно при переработке вторичных, легко деструктируемых термопластов), малые износ оборудования и энергоемкость процесса, а также возможность достижения более высокого коэффициента смешения при получении композиции в процессе последующей переработки выгодно отличают дражираторы от используемого традиционного оборудования.

При наличии в экструдерах и литьевых машинах червяков соответствующей конструкции, обеспечивающих качественное диспергирование, гранулы после дражиратора можно перерабатывать непосредственно в изделия.

При производстве крупногабаритной тары из термопластичных композиционных материалов решающим фактором, определяющим технологию ее производства, является выбор перерабатывающего оборудования. Выбор оборудования и технологической оснастки обусловливается конфигурацией и функциональным назначением формуемой тары, а выбор материала, как указывалось ранее,— условиями эксплуатации и сроком службы, который оценивается стойкостью к старению.

Изготовление полимерной тары в промышленности осуществляется различными технологическими способами: экструзией и соэкструзией, раздувным формованием, литьем под давлением, ротационным формованием; из листов и пленок — сваркой, склеиванием, термоформованием, формованием в твердой фазе (штамповкой), прессованием. В последние годы разработана и получает сравнительно широкое распространение новая технология изготовления изделий непосредственно из реакционноспособных компонентов — так называемый RlM-процесс, а также радиационно-химическая технология, которые могут успешно использоваться и в производстве транспортной тары

Эффективность традиционных способов переработки полимерных материалов и композиций в тару определяется в первую очередь серийностью выпускаемых изделий, их габаритами, стоимостью оборудования и оснастки и т. д. Так, при серийности свыше 10 тыс. шт. тары емкостью до 20 л эффективно литье под давлением, при меньшей серийности и большей емкости — ротационное формование.


ЭКСТРУЗИОННОЕ ФОРМОВАНИЕ

Экструзия представляет собой процесс получения из исходного полимерного материала в виде гранул или порошка непрерывного изделия заданного поперечного сечения продавливанием расплава через формующий инструмент. Это один из наиболее распространенных способов переработки полимеров. Как способ получения тары экструзия представляет существенный интерес, поскольку этим методом можно получать мягкую транспортную тару в виде мешков (в том числе с газоселективным устройством для хранения плодоовощной продукции), комбинированную тару и т. д. При этом первоначально экструзией или соэкструзией получают однослойные или комбинированные (двухслойные) пленочные материалы, которые затем могут подвергаться сварке, склеиванию или другому виду обработки [24, 25, 29]. Экструзия является также неотъемлемой операцией при получении тары из листов термоформованием, раздувом, склеиванием и штамповкой.

Экструдеры для переработки полимерных материалов делятся на червячные (одно-, двух-, многочервячные) и бесчервячные — дисковые, работающие на использовании эффекта Вайссенберга. В последнее время появились модели, в которых сочетаются диск и червяк — червячно-дисковые экструдеры.

Наибольшее распространение для переработки полимерных композиций в пленку и листы получили одночервячные экструдеры с постоянным диаметром червяка.

В настоящее время широкое распространение получило использование многослойных комбинированных материалов в сочетании с бумагой, фольгой, картоном, другими полимерами, что позволяет на базе ограниченного числа полимеров, изготавливать тару и упаковку с любым комплексом заданных свойств. Такие комбинированные материалы получают экструзией с нанесением расплава на подложку или склеиванием исходных пленочных материалов

Комбинированные пленочные материалы улучшенного качества для производства тары (мешков) можно производить и таким прогрессивным способом, каксоэкструзия. Соэкструзия позволяет получать комбинированный материал за счет соединения двух или нескольких потоков расплавов в головке специальной конструкции. В головку (рис. 2, а), которая имеет два входовых канала 1 и 2 (1 — внутренний кольцевой канал, 2 — наружный), расплавы полимеров подаются из двух экструдеров. Сваривание их происходит в кольцевом зазоре 3, при этом они не смешиваются друг с другом, так как ламинарное течение расплавов обеспечивает четкое разграничение слоев.

Метод соэкструзии имеет существенное преимущество перед другими способами получения комбинированных материалов (экструзионным покрытием и ламинированием, ламинированием с помощью мокрого: или сухого связующего и др.). Достоинства этого метода заключаются в следующем. Он обеспечивает возможность получения многослойных материалов в одну стадию с оптимальными затратами энергии и металла; исключает применение клеев, растворителей, горячих расплавов и других компонентов для соединения отдельных слоев; позволяет создать высокую адгезию между слоями за счет соединения их в расплаве и получить более качественный материал с улучшенными физико-механическими и эксплуатационными характеристиками; дает возможность получать комбинированный материал за счет соединения очень тонких слоев, что позволяет уменьшать расход полимеров; позволяет уменьшать степень деструкции термочувствительных полимеров за счет того, что они могут быть использованы в качестве среднего слоя; способствует повышению производительности процесса благодаря применению двух и более экструдеров в сочетании с одной головкой


Рис. 2

Ограничением при соэкструзии является необходимость использования полимеров с реологически подобными характеристиками, например ПЭВП/ПЭВП, ПЭНП/ПЭНП, ПЭНП/попролин, ПЭВП/попролин и т. д. Соэкструзией можно получать многослойные и многоцветные пленки.

Для производства однослойных двухцветных рукавных пленок на том же агрегате его оснащают сменной экструзионной головкой, предназначенной для этих целей. Угловая кольцевая головка для производства однослойных двухцветных рукавных пленок (рис. 2,6) имеет два формующих полукольцевых канала 1 л 2 (1 — центральный кольцевой канал, 2 — наружный), по которым окрашенные в различные цвета расплавы направляются в выходной кольцевой зазор 3, где свариваются и откуда изделие в виде однослойного двухцветного рукава выходит наружу. Однако и в этом случае подобие вязкостных свойств используемых расплавов является необходимым условием переработки. Расплавы с одинаковыми вязкостными свойствами, контролируемыми таким технологическим параметром, как ПТР, можно получать, регулируя режимы переработки или состав полимерной композиции.

Основными направлениями работ в области экструзии в последние годы являются: изменение геометрии и профиля червяка; создание многочервячных экструзионных машин с наборными элементами и специальными профилями, что позволяет улучшать качество расплава и повышать производительность оборудования; применение экструдеров с нарезанными в цилиндрах канавками разных размеров, обеспечивающих большие возможности при переходе от одного типа материала к другому; снижение противодавления и повышение вследствие этого производительности за счет модернизации экструзионной головки; снижение скорости сдвига, приводящее к облегчению переработки и повышению срока службы упорных подшипников; совершенствование системы внутреннего охлаждения рукава; использование диабетических экструзионных систем и др.

Например, система внутреннего охлаждения рукавной пленки, включающая блок, через который поток воздуха равномерно распределяется по окружности и одновременно попадает на всю внутреннюю поверхность рукава, позволяет получать пленки из полиолефинов толщиной 200 мкм при производительности до 300 кг/ч, диаметре червяка 90 мм, диаметре мундштука 225 мм, отношении L/D = 30:1 и мощности электродвигателя 70 кВт. В многочервячных экструдерах совершенствуется конструкция червяков с более глубокими канавками (при этом удается снизить скорость вращения червяков); применяются конические червяки в трехчервячных к струдерах, а также последовательное расположение червяков с разделением зон плавления и транспортировки расплава. При этом отношение L/D первого червяка такой двухчервячной системы составляет 18:1, второго 14:1, далее располагается интенсивно охлаждаемая головка. Достижения в области экструзии открывают новые возможности получения и использования мягкой транспортной тары из полимерных материалов.

ЛИТЬЕ ПОД ДАВЛЕНИЕМ

Литье под давлением на сегодняшний день является самым распространенным способом получения жесткой транспортной тары в виде ящиков разных размеров и сложной конфигурации при минимальных затратах машинного времени. Литье под давлением является эффективным при серийности свыше 10 тыс. шт. единиц среднегабаритной тары (до 75 л). При этом литьевая машина должна обладать высокой пластикационной производительностью.

Выбор типоразмера литьевой машины определяется следующими параметрами: а) массой (объемом) одной отливки; б) усилием смыкания формы в соответствии с площадью одной отливки и инжекционным давлением; в) размером плит и ходом подвижной плиты; г) максимальным расстоянием между плитами; д) конструкцией выталкивателей.

Литьевые машины создаются универсальными по конструкционным параметрам и специализированными по перерабатываемым материалам. Это достигается выпуском литьевых машин с инжекционными цилиндрами различной конструкции, размерами и геометрией червяков, их наконечников, обратных клапанов, сопел. Такие машины могут работать в различных технологических режимах, что позволяет перерабатывать на них разнообразные полимерные материалы и получать изделия, отличающиеся по объему и конфигурации. Обычно современные литьевые машины имеют в комплекте 3—4 цилиндра, несколько червяков и инжекционных сопел, термостатирующее устройство для охлаждения формы и оснащаются указанными узлами в соответствии с типом перерабатываемых материалов, требуемыми давлениями литья и объемами получаемых изделий.

Универсальность литьевой машины обеспечивается выбором оптимальных параметров механизмов инжекции и запирания формы. Как правило, каждая фирма (завод) создают ряд (серию) машин для литья изделий массой от нескольких граммов до нескольких килограммов, а в отдельных случаях — десятков килограммов (крупногабаритные машины).

Для производства ящичной крупногабаритной тары необходимы термопластавтоматы с объемами впрыска от 1 до 10—15 кг и усилением смыкания полуформ от 4 до 16 мН. Такие машины выпускаются зарубежными фирмами — ФРГ («Баттенфельд», «Краусс— Маффей», «Мауер», «Штюббе»), Италии («Триульцы— Ресо, «Бираги», «Негри — БоссиСандретто»), Франции («Биллион»), Индии («Виндзор» по лицензии ив сотрудничестве с английской фирмой «Клекнер Виндзор»), ГДР («Трузиома», машины типа «Куаси»). В СССР также освоено производство подобных машин (с объемом выпуска до 5000 см3 ).

К-во Просмотров: 172
Бесплатно скачать Реферат: Подготовительные процессы оптимизации состава полимерной композиции