Реферат: Подвижные сосредоточенные источники постоянной мощности

(7.6)

Интегрируя от 0 до tН и преобразуем

(7.7)

где r 2 = x 2 + y 2 .

Уравнение (7.7) выражает температурное поле в пластине в стадии теплонасыщения. Предельное квазистационарное состояние достигается при t →∞. В этом случае уравнение принимает вид

(7.8)

где К0 модифицированная функция Бесселя 2-го рода нулевого порядка; b =2α/ c γδ.

Рис. 7.3. Температурное поле предельного состояния при движении линейного источника теплоты в бесконечной пластине:

а — изотермы на поверхности пластины, пунктирная кривая — точки с максимальными температурами; б — распределение температуры в сечениях параллельных оси х; г ~ схема координатных осей

Предельное состояние. При нагреве пластины линейным источником теплоты распределение температуры по ее толщине согласно уравнению (7.8) равномерно. Следует, однако, иметь в виду, что в действительности из-за наличия теплоотдачи с поверхности пластины всегда наблюдается некоторая неравномерность распределения температуры по ее толщине.

Картины распределения температуры в пластине (рис. 7.3) и в плоскости хОу массивного тела (см. рис. 7.2) качественно имеют много общего. Отличие заключается в том, что изотермы в пластине еще более вытянуты, чем в полубесконечном теле. Степень вытянутости изотерм зависит не только от условий сварки и теплофизических свойств материала, но и от теплоотдачи в воздух.

Неподвижный источник. Если в уравнении (7.8) принять v = 0, то получим уравнение стационарного температурного поля в пластине:

(7.9)

Температурное поле является осесимметричным. В отличие от полубесконечного тела, где стационарное состояние достигается благодаря значительному теплоотводу в трех направлениях, стационарное состояние в пластине возможно лишь при наличии теплоотдачи в окружающее пространство. Если теплоотдача отсутствует, то температура возрастает беспредельно.Распределение температуры при стационарном процессе в пластине зависит не только от мощности и коэффициента теплопроводности λ, но и от коэффициента теплоотдачи α и толщины пластины δ.

Подвижный плоский источник теплоты в бесконечном стержне

Плоский источник теплоты постоянной мощности q равномерно распределен по поперечному сечению стержня F и перемещается с постоянной скоростью v в направлении вдоль стержня (см. рис. 7.1, в ). Боковая поверхность отдает теплоту в окружающую среду при постоянном коэффициенте теплоотдачи α.

Приращение температуры в точке А от мгновенного плоского источника, который действовал в точке О' t секунд назад, составит

(7.10)

Начало координат движется вместе с источником теплоты и находится в точке О.

Интегрируем приращения температуры от всех мгновенных источниковтеплоты в пределах от 0 до t Н :

(7.11)

Уравнение (7.11) описывает температурное поле в стержне в стадии теплонасыщения. Предельное квазистационарное состояние достигается при tH —>∞. В этом случае уравнение (7.11) после введения замены t = u 2 и интегрирования принимает вид:

(7.12)

Предельное состояние. При нагреве стержня плоским источником теплоты распределение температуры по поперечному сечению стержня согласно уравнению (7.12) равномерно. В действительности из-за теплоотдачи с поверхности стержня всегда будет наблюдаться некоторая неравномерность распределения температуры по его поперечному сечению.

Распределение температуры вдоль стержня будет характеризоваться быстрым нарастанием температуры впереди источника теплоты и весьма плавным спадом температуры позади источника. Если 4 ba / v 2 =0 т. е. теплоотдача отсутствует, то температура позади источника теплоты будет оставаться постоянной.

Неподвижный источник . Если в уравнении (7.12) v = 0 , то получим уравнение стационарного температурного поля в стержне:

(7.13)

Стационарное состояние в стержне возможно лишь при наличии теплоотдачи в окружающую среду. Распределение температуры при стационарном процессе в стержне зависит от λ, b , F и р.

К-во Просмотров: 122
Бесплатно скачать Реферат: Подвижные сосредоточенные источники постоянной мощности