Реферат: Полимеразная цепная реакция и электрофорез

ПЦР-реакция

Может возникнуть необходимость увеличить количество индивидуальной кДНК до ее введения в плазмиду с помощью какого-то процесса ее воспроизводства. Такой процесс разработан и широко применяется не только для решения этой частной задачи, но и во всех случаях, когда необходимо умножить количество определенных фрагментов ДНК. Например, фрагментов, содержащих изучаемый ген и его регуляторное окружение.

Процесс этот получил название ПЦР-реакция, что расшифровывается как полимеразная цепная реакция. (В английском названии PCR — polymerasechainreaction.) Невольно напрашивается сопоставление с реакцией атомного взрыва. И, пожалуй, оно не лишено смысла — нарастание количества нужной ДНК происходит чрезвычайно быстро, даже бурно.

Рассмотрим эту реакцию для общего случая — наработки множества копий некоего фрагмента ДНК, содержащего в какой-то своей части интересующую нас последовательность пар оснований. Итак, допустим, что нам известна последовательность нуклеотидов на достаточно большом протяжении некой ДНК и есть основания предполагать, что внутри этой последовательности лежит интересующий нас участок. Рассмотрим серию операций, ведущих к его выделению и умножению.

Сначала в местах, лежащих близко, но заведомо за пределами интересующего нас участка ДНК, выберем две последовательности — по 20 пар нуклеотидов, лежащих по обе стороны от этого участка. Исходя из этих последовательностей синтезируем химически два однонитевых праймера на основе дезоксирибонуклеотидов. Первый — комплементарно к условно «первой» нити ДНК с ее Законна, второй — комплементарно ко «второй» нити с ее Законна. Очевидно, что праймеры будут разные.

Теперь добавим в буфер, где растворено малое количество исходной ДНК оба праймера в большом избытке, нагреем смесь до температуры 94°, а потом быстро охладим до 50°. ДНК денатурируется при 94°, ее нити расходятся. При 50° оба праймера гиб-ридизируются с выбранными для них участками однонитевых ДНК. Это произойдет быстро, так как праймеры имеются в избытке и, кроме того, вследствие своей малости они подвижны и легко «найдут» свои посадочные места. Ренатурация ДНК происходит медленно. За те 2 минуты, что будет продолжаться этот этап, ДНК практически не ренатурируется, а праймеры успеют надежно гибридизоваться с комплементарными для них участками обеих нитей. Такая ситуация отражена на рисунке 35 (1). Праймеры, как обычно, садятся с 3"-конца матричной нити ДНК и направляют движение будущей ДНК-полимеразы к ее 5'-концу. Это направление указано стрелками. Для удобства описания дальнейших событий, присвоим праймерам названия «левый» (стрелка зачернена) и «правый» (стрелка не зачернена).

Теперь быстро поднимем температуру смеси до 72 °С. при этой температуре нити ДНК заведомо не сойдутся, а праймеры еще удержатся на своих местах. Внесем в раствор ДНК-полимеразу. Вообще-то говоря, она там была с самого начала!

Но что это за фермент, который не денатурируется при 94°, а при 72° сейчас начнет вести комплементарный синтез ДНК? К счастью, такая ДНК-полимераза существует. Ее называют «Taq ДНК-полимераза» и выделяют из очень термофильных бактерий «Thermusaquaticus», прекрасно размножающихся при температуре 85 °С.

Итак, переходим к этапу 2, где изображен процесс матричного синтеза комплементарной нити ДНК, начинающийся от праймера и продолжающийся без других ограничений (что отмечено стрелой), кроме ограничения длительности этого этапа (3 минуты). Мы будем для простоты рисунка рассматривать события, начинающиеся с копирования только одной нити, хотя, конечно, будут копироваться обе. Они совершенно равноправны, и в заключение нашего анализа надо будет просто удвоить полученный результат. Через 3 минуты оканчивается 2-й этап и температура снова скачком поднимается до 94°, а еще через одну минуту быстро снижается до 50°. Эта ситуация отражена на этапе 3. При 94° новосинтезированная нить ДНК отделилась от материнской нити. (Последнюю, для ясности, я здесь и всюду далее изображаю жирной линией.) В составе новосинтезированной копии я больше не изображаю «левый» праймер, поскольку он был комплементарен материнской нити ДНК и потому вместе с участком, синтезированным ДНК-полимеразой, вошел в состав копии. Зато на эту копию с ее 3'-конца при 50° на предназначенный для него участок (ведь копия тождественна «второй» материнской нити) уже сел «правый» праймер. На освободившуюся материнскую нить с ее З*-конца тоже сел праймер — «левый», но, конечно, не тот, что ушел с копией, а другой, точно такой же. Благо праймеры имеются в избытке.

На этапе 4 (при 72°) показаны два новых комплементарных синтеза. Тот, что идет по материнской нити, по-прежнему, пространственно не ограничен. А вот тот синтез, что начинается от правого праймера, сидящего на новосинтезированной копии окончится там, где в этой копии «спрятан» весь бывший «левый» праймер — ведь с него эта копия начиналась. В результате здесь впервые появляется выбранный для умножения участок ДНК, ограниченный двумя праймерами, включая и их самих. Это хорошо видно на этапе 5, когда после нагрева до 94° все двойные нити разошлись и на рисунке оказываются уже 4 одинарных нити, на которые, туда «где им положено» село 4 праймера (два «левых» и два «правых»). Этап 6 — синтез 4-х копий, начинающихся от этих праймеров. В трех случаях из четырех он ограничен длиной нужного отрезка ДНК. (Материнская нить здесь, как и всюду дальше копируется без ограничения справа.) Вместе с образованным на 4-м этапе и уже обрезанным с обеих сторон участком мы получаем 4 фрагмента исходной ДНК нужного размера. Это хорошо видно на этапе 7, где все четыре пары нитей ДНК разошлись и на них уже сидят 8 праймеров...

Если у читателя хватило терпения разобраться во всей этой «механике», то он согласится, что после синтеза на этапе 8 получится уже 11 отрезков ДНК нужной длины. Заметим попутно, что хотя мы рассматриваем «потомство» одной только «первой» материнской нити, среди полученных отрезков будут копии участков как «первой», так и «второй» материнской нити, поскольку мы уже не один раз вели комплементарный матричный синтез.

Проследим теперь закономерность, отраженную в цифрах, стоящих справа от рисунка, около изображений 3-го, 5-го, 7-го и 8-го этапов. Перед скобкой каждый раз стоит число одиночных нитей ДНК после нагревания до 94°. Легко заметить, что оно неизменно удваивается. Что и следовало ожидать, поскольку на каждом из предыдущих четных этапов все имеющиеся в наличии нити ДНК так или иначе копируются.

Но вот что может показаться неожиданным, и в чем состоит вся суть ПЦР-реакции. Число фрагментов нужного размера, указанное в скобках, нарастает несравненно быстрее: 0-1-4—11 штук. Так будет и далее. Каждый укороченный отрезок будет копироваться в том же размере. И число их будет непрерывно пополняться за счет не сразу укороченных отрезков ДНК. Через 30 циклов, подобных рассмотренным (а каждый цикл — это два этапа) количество нитей ДНК достигнет огромной цифры. Притом практически все они уже будут нужной длины — и выделение фрагмента, и его умножение состоялось! Вспомним, что у нас исходно было две нити. Таким образом написанное число надо удвоить.

Что это означает не в штуках, а в весовых единицах? Можно подсчитать, что если имелось изначально всего 10 молекул ДНК, длиной в 1000 пар оснований каждая, то в результате 30-ти циклов ПЦР-реакции должно получиться около 2-х микрограммов необходимого генетического материала. Для современных методов исследования это весьма значительное количество.

На самом деле в таких подсчетах конечный выход ДНК получится значительно завышенным, потому что Taq ДНК-полимера-за изнашивается, а после 30 циклов и вовсе перестает «работать». Но ведь можно внести новую порцию фермента и запустить еще 30 циклов. (Замечу попутно, что Taq ДНК-полимераза не очень «строга». После 30 циклов в среднем 1 нуклеотид из 400 оказывается включенным ошибочно.)

Разумеется, все эти циклы осуществляются не вручную, а в специальном приборе, от которого, впрочем, требуется не многое. Только очень быстро по обозначенной выше программе менять температуру весьма малого объема жидкости (защищенной от испарения тонким слоем минерального масла). Что же касается продолжительности 30-ти циклов, то даже, если учесть, что длительность синтеза приходится по указанной выше причине постепенно увеличивать от 3-х до 10-ти минут, то на один цикл прибор будет затрачивать в среднем 12 минут. А на 30 циклов — 6 часов.

От экспериментатора требуется только правильно составить рабочую смесь. Разумеется, если праймеры уже выбраны и синтезированы в достаточном количестве. Taq ДНК-полимераза и нуклеозидтрифосфаты имеются в продаже. Наработку большого количества определенного гена при помощи ПЦР-реакции часто называют «клонированном» этого гена. Описанную здесь ПЦР-реакцию с двумя праймерами иногда именуют «симметричной», в отличие от другой тоже ПЦР-реакции, но с одним начальным праймером, которую называют «ассиметричной».

ПЦР-реакцию надо включить в описанную там последовательность операций между получением кДНК и включением ДНК в плазмиду. В этом случае последовательность 21-го нуклео-тида для праймеров придется выбирать не свободно, а точно по концам гена, кодирующего наш белок. Эти оба конца можно установить, как это было описано с помощью ЧИП-метода. Для этого даже не надо знать всю аминокислотную последовательность белка, а только концевые участки — по 7 аминокислот с каждого конца. (Благо, как упоминалось, секвенирование белка теперь можно начинать с любого конца.) При синтезе концевого праймера надо только добавить концевой кодон УГА, который не транскрибируется в иРНК. Кроме того к «наружным» концам обоих праймеров имеет смысл уже на этом этапе добавить небольшие последовательности нуклеотидов, которые, не будучи комплементарны ни к какому участку гена, не будут и гибридизоваться. Но могут образовать два «липких» конца для последующего включения размноженной кДНК в разрезанные плазмиды. На рис. 35 эти дополнительные последовательности изображены в виде «хвостиков» у праймеров. Напомню, что эта размноженная кДНК нам потребовалась для того, чтобы добиться достаточно эффективного включения содержащих ее плазмид в бактерию, которая, размножаясь, будет нарабатывать в большом количестве нужный нам белок.

Весь полный комплекс мер по умножению количества индивидуального белка иной раз оказывается столь эффективным, что чужеродный белок в цитоплазме бактерий-рециплиентов появляется в ходе их размножения в виде гранул. Он ведь чужой — и потому не расходуется в самой бактерии. После лизиса клеток гранулы можно собрать простым центрифугированием. Для их диссоциации приходится использовать обработку осадка щелочью, детергентами и мочевиной. Белок денатурируется. Для его ренатурации приходится прибегать к разбавлению, диализу от денатурирующих добавок, изменению рН и ионной силы среды.

Подлинность наработанного белка проверяют по ферментативной активности, если он должен таковой обладать. Или же по электрофорезу — сравнением с контрольным препаратом. Но надежнее — одним из иммунологических методов контроля, с которыми мы познакомимся в свое время.


2. Электрофорез

Метод электрофореза таит в себе массу «подводных камней», отчего слепое копирование описанных в научной литературе примеров его использования приводит, как правило, к плачевным результатам. Поэтому попробуем разобраться в физических основах метода поглубже..

2.1 Введение в метод электрофореза

Представим себе два емких сосуда, соединенных между собой тонкой и длинной стеклянной трубочкой, наподобие буквы Н. Пусть сосуды и трубочка заполнены слабым раствором поваренной соли. В сосуды опустим электроды — проволочки, соединенные с клеммами источника постоянного напряжения. К примеру, пусть проволочка из правого сосуда присоединена к клемме «-», а из левого — к клемме «+». Это будут, соответственно, наши катод и анод. Включим напряжение. Миллиамперметр источника покажет, что в замкнутой цепи протекает некий ток. Он течет через солевой раствор, в частности и вдоль трубочки. Она-то нас и интересует. Вдумаемся в то, что в ней будет происходить. Никаких других растворенных веществ в трубочке нет. Электрический ток обусловлен исключительно движением двух ионов — отрицательными ионами Сl и положительными Na+ . Первые движутся влево, к аноду, вторые — вправо, к катоду.

Следует ли опасаться, что запас ионов С1- и Na+ в трубочке со временем истощится? Нет. Потому что из резервуара катода в трубочку будут входить ионы Сl- , а из резервуара анода — ионы Na+ , поддерживая неизменной концентрацию обоих ионов в ней. Во всяком случае так будет продолжаться до тех пор, пока не исчерпаются или хотя бы существенно изменятся запасы этих ионов в самих резервуарах. Мы до этого доводить не будем.

Зададимся теперь наивным вопросом: а что заставляет какой-нибудь конкретный ион (пусть С1- ), находящийся в трубочке, двигаться влево по направлению к аноду? Ответ очевидный _ электрическое поле. А конкретнее?

Раз по трубочке течет электрический ток, значит она играет роль проводника и, следовательно, на нее подается определенное «напряжение». Ну а откуда, спросим себя, некий индивидуальный ион С1- , находящийся в середине трубки «знает», что к ее концам приложено напряжение? Но коль скоро к концам любого проводника приложено напряжение, то в этом проводнике на всей его длине немедленно образуется электрическое поле. Оно будет тем интенсивнее (сильнее), чем больше напряжение и короче трубочка. Величину интенсивности электрического поля в любой точке однородного проводника определяют как Е = V/1, где V _ напряжение, которое подается на проводник, а 1 — его длина. Эту величину именуют «напряженностью» электрического поля в данной точке проводника. Единицей напряженности, очевидно, является В/см.

Величину напряженности поля и «чувствует» любой ион, находящийся в этой точке, она заставляет его двигаться к соответствующему электроду. В однородном проводнике напряженность поля одинакова в любой точке. Подчеркнем, что напряженность поля не зависит (практически) от находящихся в трубочке в малых количествах веществ, хотя бы тоже ионов. Ее определяют основные носители тока, данном случае ионы С1- и Na+ . Но сами эти «посторонние» вещества, если они тоже ионы, будут в полной мере испытывать воздействие электрического поля.

Сила, действующая на любой ион равна произведению величины его заряда на напряженность поля. В нашей трубочке она постоянна и мы могли бы ожидать на основе законов механики, что все ионы движутся равноускоренно. Этого не происходит из-за сопротивления, которое оказывает такому движению окружающая среда, в данном случае вода. В результате каждый заряженный ион будет «пробиваться», мигрировать к своему аноду довольно медленно и с постоянной скоростью, поскольку сила трения увеличивается с увеличением скорости миграции до тех пор, пока она не сравняется с силой, влекущей ион к его электроду. У разных ионов эта скорость может быть различной, поскольку сила трения зависит еще и от размера иона. Вообще, скорость миграции иона будет тем больше, чем больше его заряд и напряженность электрического поля и чем меньше размер иона. Ионы С1- и Na+ примерно одинаковой величины и потому мигрируют в разных направлениях, но с примерно одинаковой скоростью. Совсем другое дело, если бы вместо NaCI мы растворили в воде знакомый нам Трис-НСl буфер. Нам известно, что при исходной концентрации Триса =0,1 M и добавлении в его водный раствор НС1 до 0,05 М (при рН8) примерно половина молекул Tpиca превращаются в ионы Трис+ и точно такое же количество в растворе появляется ионов С1- . Ион Трис+ в 3 раза тяжелее и в несколько раз крупнее, чем ион С1- . Соответственно он будет медленнее мигрировать в электрическом поле. А следовательно, основными носителями тока в этом случае будут ионы С1- (хотя свой небольшой вклад дадут и ионы Трис+ ). Более того, если бы мы вообще каким-либо образом «перегородили дорогу» ионам Трис+ , то весь ток переносили бы только ионы С1- (подобно электронам в металлическом проводнике). Напряженность поля установится и прочие заряженные вещества смогут двигаться в этом поле в соответствии со своими зарядами и размерами. Можно сказать, что напряженность поля определяется основными носителями заряда — они создают реальное сопротивление проводника, следовательно и величину напряжения от источника тока, которое приходится на его долю. А тем самым и напряженность поля, если длина проводника (трубочки) неизменна и он однороден.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 163
Бесплатно скачать Реферат: Полимеразная цепная реакция и электрофорез