Реферат: Получение случайных чисел
Овладение навыками алгоритмизации и программирования задач с использованием датчиков случайных чисел, способами получения случайных чисел с различными законами распределения, навыками оценки качества псевдослучайных чисел и их соответствия заданному закону распределения.
1.2. Задания для самостоятельной подготовки
Изучить:
· способы получения случайных чисел с различными законами распределения;
· -способы использования в программах обращений к функциям или подпрограммам для получения псевдослучайных чисел с различными законами распределения;
· способами использования случайных чисел для моделирования.
Разработать алгоритм решения в соответствии с заданием.
Составить программу решения задачи.
Подготовить тестовый вариант программы и исходных данных.
1.3. Задание к работе
1. Выполнить на ЭВМ программу в соответствии со следующим заданием:
Сгенерировать последовательность из 50 случайных чисел с нормальным законом распределения а=5,s=4) и последовательность из 50 случайных чисел с экспоненциальным законом распределения с параметром l=5. Все числа свести в массив, расположив их по возрастанию. Вычислить среднее значение, дисперсию и вывести результаты на печать в виде гистограммы, разбив последовательность чисел на десять интервалов
2. Проверить правильность выполнения программы с помощью тестового варианта.
2. Руководство программиста.
Прежде, чем приступить к самому процессу алгоритмизации и программирования заглянем в теорию, по которой, собственно, и дано задание.
2.1. Теоретическая база.
2.1.1. Нормальное распределение.
Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается плотностью
Мы видим, что нормальное распределение определяется двумя параметрами: а и s. Достаточно знать эти параметры, чтобы задать нормальное распределение. Покажем, вероятностный смысл этих параметров таков: а есть математическое ожидание, s—среднее квадратическое отклонение нормального распределения.
2.1.2 Показательное (экспоненциальное) распределение.
Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины X, которое описывается плотностью
где l - постоянная положительная величина.
Мы видим, что показательное распределение определяется одним параметром l. Эта особенность показательного распределения указывает на его преимущество по сравнению с распределениями, зависящими от большего числа параметров. Обычно параметры неизвестны и приходится находить их оценки (приближенные значения); разумеется, проще оценить один параметр, чем два или три и т. д. Примером непрерывной случайной величины, распределенной по показательному закону, может служить время между появлениями двух последовательных событий простейшего потока.
2.2. Начало алгоритмизации.
Для получения двух последовательностей из 50 случайных чисел с показательным и нормальным законами распределения необходимо организовать цикл, который будет выполнятся 50 раз. Внутри цикла будем пользоваться функцией из Турбо Паскаля random(a) - эта функция выдает произвольное число из интервала от 1 до a, a£65535. Каждое полученное число будет вносится в массив, причем первые 50 элементов этого массива получены по нормальному закону, а другие 50 - по показательному.
Для упорядочивания массива случайных величин создадим двойной цикл. Для расчета мат. ожидания и дисперсии упорядоченного массива также создадим двойной цикл, с учетом того, что массив уже надо разбить на 10 частей и расчет проводить по каждому из промежутков. Для построения гистограммы воспользуемся средствами модуля Graph.tpu.
Блок-схемой основной программы будет приведена в приложении. Также в приложении будут размещены блок-схемы подпрограмм-процедур, используемых в данной программе.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--