Реферат: Полупроводниковые диоды

Инерционные свойства фотодиодов можно характеризовать предельной рабочей частотой (частота модуляции света, на которой амплитуда фотоответа уменьшается до 0, 7 от максимальной), постоянной времени фотоответа (определяемой по времени наростания импульса фотоответа до 0, 63 до максимального, при прямоугольном импульсе света), сдвигом фаз между входным (световым) и выходным (электрическим) сигналом.

В общем случае, инерционность фотодиодов определяется тремя основными параметрами: временем диффузии неравновесных носителей через базу ; временем их полета через область объемного заряда p-n-перехода ; RC-постоянной . Время диффузии носителей через базу определено как:

=W /2 Dp Время полета носителей через область область объемного заряда (шириной d) можно оценить как = d/Vmax, где Vmax - максимальная скорость движения носителей в электрическом поле, которая при больших полях не зависит от напряженности электрического поля вследствии уменьшения подвижности в силовых полях.

Высоким быстродействием обладают фотодиоды на основе барьера Шоттки. В типичной структуре такого диода через тонкую полупрозрачную пленку металла и поглощается в основном в области объемного заряда полупроводника. Следовательно, иннерционность обуславливается только временами i и rc. Малое значение обуславливается узкой областью объемного заряда, а небольшое значение получается за счет того, что удельное сопротивление металла много меньше, чем полупроводника, и соответственно меньше. Основными переносчиками тока через контакт в этом случае являются дырки полупроводника, которые практически мгновенно рекомбинируют с электронами в металле.

Светодиоды

Энергетической характеристикой излучающих диодов (светодиодов) является квантовая эффективность, которая определяется как отношение числа излучаемых во вне фотонов к числу электронов, проходящих через p-n-переход. Хотя эта величина теоретически может достигать 100%, практически она порядка 0, 1. . . 1%. Это объясняется большой долей безизлучательных переходов в общем рекомбинационном процессе и малостью доли фотонов, выходящих из светодиода. С понижением температуры вероятность излучательной рекомбинации растет и квантовая эффективность увеличивается.

Отличительными особенностями светодиодов по сравнению с обычными источниками света являются малые размеры, малые рабочие напряжения, высокое быстродействие (~10 c) и большой срок службы. Светодиоды находят широкое применение для схем автоматики, световых табло, оптронов.

Туннельные Диоды

Туннельный диод является с вольт-амперной характеристикой N-типа, работа которого основана на туннельном прохождении носителей заряда через потенциальный барьер p-n-перехода. Как известно, вероятность туннельного прохождения частиц через потенциальный барьер растет с уменьшением его ширины. Поэтому для создания туннельных диодов используют p-n-переходы с узкой областью объёмного заряда. Другим требованием к материалу туннельного для диода является необходимость вырождения p- и n- областей. Полупроводники становяться вырожденными при сильном легировании. Уровень Ферми в этом случае расположен в разрешенной зоне. С повышением концентрации примесей уменьшается и ширина области объемного заряда p-n-перехода (при Na=Nd=10 см , d 10 см). Таким образом, сильным легированием областей p-n-перехода достигается вырождение p- и n- полупроводников и малое значение ширины p-n-перехода.

Эквивалентная схема R туннельного диода может ┌────┐ быть представлена в виде Є────┤ C ├───


───Є (Рис. 3). └─────┘ r L

Рис. 3

Она состоит из дифференциального сопротивления p-n-перехода R, зарядной ёмкости C, сопротивления потерь r, индуктивности выводов L. Емкость корпуса туннельного диода можно учесть в схеме внешней цепи, поэтому мы её для простоты опустим. Перенос тока в туннельном диоде при V<Vост осуществляется основными носителями, а не неосновными, как в обычных диодах. Скорость распростронения процесса определяется временем релаксации . Это время порядка 10 . . . 10 с и оно не ограничивает частотные свойства прибора. Поэтому в эквивалентной схеме отсутствует диффузионная ёмкость p-n-перехода, а все остальные элементы практически не зависят от частоты.

На основании эквивалентной схемы нетрудно записать выражение для полного сопротивления туннельного диода, а из него определить предельную и собственную резонансную частоту.

Туннельные диоды, благодаря их высокочастотным свойствам, применяються в схемах высокочастотного переключения, а так-же для усиления и генерирования колебаний на сверхвысоких частотах. Схема переключения подобна аналогичной схеме на S-диоде. Для того чтобы нагрузочная прямая пересекала вольт-амперную характеристику в трех точках, сопротивление нагрузки должно быть больше дифференциального сопротивления диода на участке отрицательного сопротивления.

Вследствии большей ширины запрещённой зоны арсенида галлия напряжение срыва в диодах из него (~1 B) выше, чем в диодах из германия (~0, 4 B). Поэтому диоды из арсенида галлия предпочтительнее для использования в переключающих устройствах (в особенности для счетной техники) и в генераторах. Широкая запрещенная зона обуславливает и большую их термостабильность. Германиевые туннельные диоды имеют меньший уровень собственных шумов, что важно для использования в схемах усилителей.

К-во Просмотров: 518
Бесплатно скачать Реферат: Полупроводниковые диоды