Реферат: Понятие о физической величине. Международная система единиц физических величин СИ

4) разработать программное обеспечение ИВС.

2. ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА И СТАТИСТИЧЕСКАЯ ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Большинство исследований проводят для установления с помощью эксперимента функциональных или статистических связей между несколькими величинами или для решения экстремальных задач. Классический метод постановки эксперимента предусматривает фиксирование на принятых уровнях всех переменных факторов, кроме одного, значения которого определенным образом изменяют в области его определения. Этот метод составляет основу однофакторного эксперимента (такой эксперимент часто называют пассивным ). При однофакторном эксперименте, варьируя один фактор и стабилизируя все прочие на выбранных уровнях, находят зависимость исследуемой величины только от одного фактора. Производя большое число однофакторных экспериментов при изучении многофакторной системы, получают частотные зависимости, представленные многими графиками, имеющими иллюстративный характер. Найденные таким образом частные зависимости невозможно объединить в одну большую. В случае однофакторного (пассивного) эксперимента статистические методы применяют после окончания экспериментов, когда данные уже получены.

Использование однофакторного эксперимента для всестороннего исследования многофакторного процесса требует постановки очень большого числа опытов. Для их выполнения в ряде случаев необходимо значительное время, в течение которого влияние неконтролируемых факторов на результаты опытов может существенно измениться. По этой причине данные большого числа опытов оказываются несопоставимыми. Отсюда следует, что результаты однофакторных экспериментов, полученные при исследовании многофакторных систем, часто малопригодны для практического использования. Кроме того, при решении экстремальных задач данные значительного числа опытов оказываются ненужными, так как получены они для области, далекой от оптимума. Для изучения многофакторных систем наиболее целесообразным является применение статистических методов планирования эксперимента.

Под планированием эксперимента понимают процесс определения числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью.

Планирование эксперимента – это раздел математической статистики. В нем рассматриваются статистические методы планирования эксперимента. Эти методы позволяют во многих случаях при минимальном числе опытов получать модели многофакторных процессов.

Эффективность использования статистических методов планирования эксперимента при исследовании технологических процессов объясняется тем, что многие важные характеристики этих процессов являются случайными величинами, распределения которых близко следуют нормальному закону.

Характерными особенностями процесса планирования эксперимента являются стремление минимизировать число опытов; одновременное варьирование всех исследуемых факторов по специальным правилам – алгоритмам; применение математического аппарата, формализующего многие действия исследователя; выбор стратегии, позволяющей принимать обоснованные решения после каждой серии опытов.

При планировании эксперимента статистические методы применяются на всех этапах исследования и, прежде всего, перед постановкой опытов, разрабатывая схему эксперимента, а также в ходе эксперимента, при обработке результатов и после эксперимента, принимая решения о дальнейших действиях. Такой эксперимент называют активным и он предполагает планирование эксперимента .

Основные преимущества активного эксперимента связаны с тем, что он позволяет:

1) минимизировать общее число опытов;

2) выбирать четкие логически обоснованные процедуры, последовательно выполняемые экспериментатором при проведении исследования;

3) использовать математический аппарат, формализующий многие действия экспериментатора;

4) одновременно варьировать всеми переменными и оптимально использовать факторное пространство;

5) организовать эксперимент таким образом, чтобы выполнялись многие исходные предпосылки регрессионного анализа;

6) получать математические модели, имеющие лучшие в некотором смысле свойства по сравнению с моделями, построенными из пассивного эксперимента;

7) рандомизировать условия опытов, т. е. многочисленные мешающие факторы превратить в случайные величины;

8) оценивать элемент неопределенности, связанный с экспериментом, что дает возможность сопоставлять результаты, получаемые разными исследователями.

Чаще всего активный эксперимент ставят для решения одной из двух основных задач. Первую задачу называют экстремальной . Она заключается в отыскании условий процесса, обеспечивающих получение оптимального значения выбранного параметра. Признаком экстремальных задач является требование поиска экстремума некоторой функции (*проиллюстрировать графиком*). Эксперименты, которые ставят для решения задач оптимизации, называют экстремальными .

Вторую задачу называют интерполяционной . Она состоит в построении интерполяционной формулы для предсказания значений изучаемого параметра, зависящего от ряда факторов.

Для решения экстремальной или интерполяционной задачи необходимо иметь математическую модель исследуемого объекта. Модель объекта получают, используя результаты опытов.

При исследовании многофакторного процесса постановка всех возможных опытов для получения математической модели связана с огромной трудоемкостью эксперимента, так как число всех возможных опытов очень велико. Задача планирования эксперимента состоит в установлении минимально необходимого числа опытов и условий их проведения, в выборе методов математической обработки результатов и в принятии решений.

ОСНОВНЫЕ ЭТАПЫ И РЕЖИМЫ СТАТИСТИЧЕСКОЙ ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

1. Содержательный анализ эксперимента, построение априорной вероятностной математической модели источника экспериментальных данных.

2. Составление плана эксперимента, в частности, определение значений независимых переменных, выбор тестовых сигналов, оценка объема наблюдений. Предварительное обоснование и выбор методов и алгоритмов статистической обработки экспериментальных данных.

3. Проведение непосредственно экспериментальных исследований, сбор экспериментальных данных, их регистрация и ввод в ЭВМ.

4. Предварительная статистическая обработка данных, предназначенная, в первую очередь, для проверки выполнения предпосылок, лежащих в основе выбранного статистического метода построения стохастической модели объекта исследований, а при необходимости – для коррекции априорной модели и изменения решения о выборе алгоритма обработки.

5. Составление детального плана дальнейшего статистического анализа экспериментальных данных.

6. Статистическая обработка экспериментальных данных (вторичная, полная, итоговая обработка), направленная на построение модели объекта исследования, и статистический анализ ее качества. Иногда на этом же этапе решаются и задачи использования построенной модели, например: оптимизируются параметры объекта.

7. Формально-логическая и содержательная интерпретация результатов экспериментов, принятие решения о продолжении или завершении эксперимента, подведение итогов исследования.

Статистическая обработка экспериментальных данных может быть осуществлена в двух основных режимах.

К-во Просмотров: 461
Бесплатно скачать Реферат: Понятие о физической величине. Международная система единиц физических величин СИ