Реферат: Понятие

В различных эпизодах интеллектуально-речевой практи­ки (в различных текстах) встречаются понятия, словесная форма выражения которых позволяет рассматривать их как сложные, возникшие в результате преобразования других понятий. В таких случаях может возникнуть вопрос об исход­ных (иногда очевидных, иногда лишь предполагаемых) поня­тиях и характере произведенной с ними операции. Раскры­вая логические механизмы образования таких понятий, мы получаем возможность составить достаточно ясное представление об их содержании и объеме или, если необходимо, уточнить это представление. Рассмотренное выше понятие, выраженное словосочетанием «студент - спортсмен», недву­смысленно фиксирует область пересечения исходных клас­сов. Таковы же, например, понятия «солдат - герой России» или «журналист - международник». Первое выражает об­ласть пересечения класса солдат и множества героев России, второе - область пересечения понятий «журналист» и «спе­циалист по международным вопросам». Однако идеальная по ясности картина встречается далеко не всегда. Не столь просто охарактеризовать со стороны содержания и объема такие понятия, как, скажем, «научно-практическая конфе­ренция», «научно-техническая информация», «логико-психологический анализ», хотя они вроде бы построены по той же словообразовательной модели. Соединение некоторых исходных понятий в более сложную конструкцию не всегда осуществляется с должной степенью определённости, а иногда ведет к образованию достаточно серьёзных ошибок. Изучение логических операций с поня­тиями позволяет обнаружить внутренние, иногда скрытые механизмы подобных ошибок, способствует выработке дей­ственных навыков контроля над смысловыми свойствами текста. Объектами логических операций могут быть одно, два или неопределённо большое число понятий. Примерами ло­гических операций с одним понятием служат рассмотренные ранее операции обобщения и ограничения. Нужно отметить, однако, что есть ситуации, допускающие различные вариан­ты анализа. В понятии «симфония Д. Д. Шостаковича» оди­наково правомерно усматривать результат любой из следую­щих операций: 1) ограничение понятия «симфония», 2) ог­раничение понятия «музыкальное произведение Д. Д. Шос­таковича», 3) объединение указанных в пунктах 1 и 2 понятий способом, который позволяет зафиксировать в новом поня­тии область их пересечения.

Отрицание понятия.

Из операций с одним исходным понятием по степени значимости наибольшего внимания заслуживает операция, именуемая отрицанием . В результате отрицания произвольного понятия P образуется новое понятие не-P . Объем этого нового понятия включает в себя лишь те объек­ты х, о каждом из которых можно высказать истинное суж­дение х есть не-Р. Скажем, в результате отрицания понятия «журналист» получаем множество «не-журналистов», путем отрицания понятия «учебник» переходим к понятию «не-­учебник» и т. п. Чтобы отличить собственно логическое отрицание от не­которых грамматических форм, частица «не» отделяется от исходного понятия дефисом. Этим подчерки­вается, что в результате логического отрицания образуется понятие, связанное с исходным отношением контрадикторности, а не контрарности.

Рис.11.

Отрицание понятия

н е-P

????? ????????? ????????????? ??????? Р ?????? ?????????? ??????????? ?????? (???.11), ??? ???????????????? ????????? ????????????? ?????, ? ????????? ???????? ???????? ??????????. ??? ?? ????? ??????? ????????? ???????????? ????????????, ?????????? ????????? ?? ??-P =P . ??????? ??????????? ???????? ????????? ??????????? ??????? ? ??????????? ??? ???????? ????????? (??? ??????????? ????? ???????? ?????????? ??? ???????). ? ?????????????, ????????? ??????;

поэтому двойное отрицание иног­да называется мнимым (дважды отрицая данное понятие, мы, по существу, его не отрицаем).

Сложение и умножение понятий.

Из операций с двумя исходными понятиями (или боль­шим их числом) следует выделить логическое сложение и логическое умножение. Результат сложения понятий Р и Q будем называть их логической суммой и обозначать P +Q , а результат умножения тех же понятий назовем их логическим произведением и обозначим ЕQ. Вобъём понятия Р+ Q входят те объекты, каждый из которых принадлежит хотя бы одному из исходных классов. Иными словами, х принадлежит классу Р+ Q , если истинно суждение х есть Р или Q (где союз «или» употребляется в неисключающем его значении). В объём понятия PQ входят те объекты, каждый из которых принадлежит обоим исходным классам. Иначе говоря, х при­надлежит классу Е Q если истинно суждение х есть P и Q , где союз «и» фиксирует одновременное вхождение х в дан­ные классы.

Различие между этими операциями иллюстрируют гра­фические схемы. На рисунках 12 - 15 показана логическая сумма, а на рисунках 16 - 19 - логическое произведение понятий Р и Q с учетом четырех известных нам видов отношений. Лишь для равнообъемных понятий итоги сложения и умножения со­впадают, в трех других случаях классы Р+ Q и Е Q принци­пиально различны.


Это и понятно, поскольку операция сло­жения, в сущности, объединяет исходные множества, тогда как операция умножения образует класс, соответствующий области их пересечения. Уместно подчеркнуть, что результат умножения родового и видового понятий объёмно равен видовому, а результат сложения тех же понятий - родовому (см. рис.17 и 13). Если исходные понятия внеположенные, то их сложение образует класс, полностью включающий оба множества (см. рис.15); логическое произведение тех же понятий ведет к образованию нулевого класса (см. рис.19).

К-во Просмотров: 347
Бесплатно скачать Реферат: Понятие