Реферат: Поняття та класифікація систем радіоавтоматики
4.2 Статичні і динамічні властивості елементів
Після подачі на вхід елемента деякого впливу на його виході виникає перехідний процес, по закінченні якого настає стаціонарний стан.
Статична характеристика - це залежність, що зв'язує між собою стаціонарні вхідну і вихідну величини.
Прикладом статичної характеристики може служити залежність між напругою на виході частотного дискримінатора і відхиленням частоти сигналу від його номінального значення (рис.3).
Рисунок 3 – Статична характеристика дискримінатора
Динамічна характеристика - це залежність, що зв'язує між собою зміни вхідної і вихідної величин у перехідному режимі.
4.3 Перетворення Лапласа
Перетворення Лапласа має дві взаємозалежні форми – пряму і зворотну.
Пряме перетворення описується так:
,
де x(t) – оригінал функції, тобто функційна залежність у часовому вимірі;
x(p) –зображення функції x(t) за Лапласом, тобто у вимірі комплексної змінної
.
Зворотне перетворення вводиться у розгляд так:
,
що дозволяє відшукати оригінал функції x(t) по її зображенню X(p).
Існують такі методи відшукання оригіналу x(t): табличний та метод інтегрування у комплексній площині.
Глибинний сенс перетворення Лапласа полягає у тому, що за його допомогою стає можливим здійснити перехід від вихідних диференційних рівнянь, що описують систему РА у просторі комплексної змінної р .
На рис. 4 наведено загальну структурну схему ланки системи РА, яка описується коефіцієнтом передачі R(p). На цьому рисунку G(p) та x(p) – відповідно сигнали у операторній формі на вході і виході ланки.
Рисунок 4 – Загальна структурна схема ланки системи РА з коефіцієнтом передачі R(p) у операторній формі.
Наприклад, якщо ланка є диференціатором, то R(p)=p.
Тоді Якщо ланка є інтегратором, то
Тоді
4.4 Перетворення Фур'є
Якщо в перетворенні Лапласа замінити оператор р на змінну jw отримаємо перетворення Фур'є, яке також поділяється на пряме та зворотне.
Для прямого перетворення Фур'є маємо вираз
,