Реферат: Построение графика функции различными методами (самостоятельная работа учащихся)

ПРИЁМЫ И МЕТОДЫ

§1. Анализ программ и учебников

«Алгебра, 7», «Алгебра, 8», «Алгебра, 9», авт. Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова

Тема Основная цель
График функции y=kx+b . График функции y=kx. В данной теме начинается работа по формированию учащихся умения находить значение функций по известному значению аргумента (по графику) и решать по графику обратную задачу. Учащиеся должны понимать, как влияет знак коэффициента k на расположение координатной плоскости графика функций y=kx , где k ¹0, как зависит от значений k и b взаимная расположение графиков двух функций вида y=kx+b .
График функции y=k/x . При изучении свойств функции y=k/x , важно рассмотреть с учащимися расположение в координатной плоскости графика этой функции при k<0 и k>0.
График функции y= Ö x . При изучении функции y= Ö x, полезно остановится на вопросе о её связи с функцией y= x2 , где х ³0
График функции y=ax2 +bx+c.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2 , её свойств и особенностей графика. Важно, чтобы учащиеся понимали, что график функции y=ax2 +bx+c может быть получен из графика функции у=ах2 , двух параллельных переносов вдоль осей.

Приёмы построения графика функции y=ax2 +bx+c обрабатываются на конкретных примерах. При этом следует обратить внимание на формирование умения указывать координаты параболы, её ось симметрии, направление ветвей параболы.

“Алгебра, 7”, “Алгебра, 8”, “Алгебра, 9”, авт. Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова.

Тема Основная цель
Функция y=kx+b и её график. В данной теме начинается работа по формированию у учащихся умения находить значение функций по известному значению аргумента(по графику) и решать по графику обратную задачу.
Функция y=kx и её график Учащиеся должны понимать как влияет знак коэффициента k на расположение координатной плоскости графика функций y=kx, где k=0, как зависит отзначений k и b взаимное расположение графиков двух функций при k<0 и k>0.
Функция y=k/x и её график При изучении свойств функции y=k/x, важно расмотреть с учащимися расположение в координатной плоскости графика этой функции при k<0 и k>0
Функция y= x и её график При изучении функции y= x, полезноостановится на вопросе о её связи с функцией y=x , где х>0.
Функция y=ax2 +bx+c её свойства и график Изучение квадратичной функции начинается с рассмотрения функции y=аx2 , её свойств и особенностей графика. Важно, чтобы учащиеся понимали, что график функции y=ax2 +bx+c может быть получен из графика функции y=ax двух параллельных переносов вдоль осей. Приёмы построения графика функции y=ax2 +bx+c отрабатываются на конкретных примерах. При этом следует уделять внимание формированию умению указывать координаты вершины параболы, её ось симметрии, направление ветвей параболы.

”Алгебра, 7”, ”Алгебра, 8”, ”Алгебра, 9”, Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др.

График функции. Функция y=kx и его график Вводится понятие график функции. начинается работа по формированию у учащихся умений находить значение функции, заданной графиком, по известному значению аргумента, а также определять по графику функции значение аргумента, если значение функции задано. Изучение линейной функции предшествует изучение функции y=kx и ее график. Рассматривается зависимость расположения графика функции от значения коэффициента k. Учащиеся должны понимать, как влияет знак k на расположение графика.
Функции y=x , y=ax , y=ax +bx+c и их графики Научит строить график квадротичной функции. Последоательно знакомить с графиками и свойствами этих функций. Построение этих графиков на конкретных примерах осушествляется по точкам. Основное внимание уделяется построению графика с использованием координат вершины параболы, нулей функции (если они имеются) и нескольких дополнительных точек. Преобразования же графиков являются вспомогательным материалом. Формируются умения определять по графику промежутки возростания и убывания функции, промежутки знакопостоянства, нули функции
Функция y=k/x Выработать умение устанавливать основные свойства (читать график), по заданному графику функции y=x , y=x , y=1/x, y= x, y=k/x, y=ax +bx+c и изображать эскизы графиков этих функций.

“Математика 7: Арифметика. Алгебра. Анализ данных”, “Математика 8: Алгебра функции. Анализ данных”, Математика 9: Алгебра функции. Анализ данных”, авт. Г.В. Дорофеев, С.Б. Суворова, Е.А. Бунимович и др.

Тема Основная цель
Графики зависимостей y=x, y=-x, y=x2 , y=x3 , y= ½ x ½ . Графики реальных зависимостей Познакомьтесь с графиками зависимостей y=x, y=-x, y=x2 , y=x3 , y= ½ x ½ , сформировать первоначальные навыки интерпретации графиков реальных зависимостей. Учащиеся должны уметь достаточно быстро строить графики, указывая несколько характерных точек, изображать эти графики схематически. Рассматривается график y= ½ x ½ . Специальное внимание уделяется работе с графиками реальных зависимостей температуры, движения и др. Акцент ставится на умение считывать с графика нужную информацию.
Графики функций y=kx, y=kx+l, y=k/x . Графики реальных зависимостей При построении графиков формулируется представление об общих свойствах функции (нули, промежутки, монотонности, сохранение знака)
График функции y=ax2 +bx+c . Научит строить график квадратичной функции, по графику читать её свойства; учащимся сообщается, что графиком квадратичной функции является парабола, рассматриваются готовые графики квадратичной функции и анализируются их особенности (наличие оси симметрии, вершины направление ветвей, расположение по направлению к оси). Учащиеся учатся строить параболу по точкам с опорой на её симметрию. Сначала рассматриваются свойства и график функции y=ax2 , затем показывается как при сдвигах параболы y=ax2 вдоль осей координат получаются графики новых квадратичных функций. Здесь формируется умение находить вершину и ось симметрии графиков квадратичных функций, заданных формулами y=ax2 +q, y=a(x+p)2 , y=a(x+p)2 +q . Рассматриваются некоторые примеры, связанные с переносом вдоль осей координат произвольных графиков. Центральным моментом является доказательство того, что график любой квадратичной функции y=ax2 +bx+c может быть получен с помощью сдвигов вдоль координатных осей параболы y=ax2 , после чего учащиеся могут находить абсциссу вершины параболы по известной формуле. Значительное место отводиться задачам прикладного характера, которые решаются с опорой на графические представления.

Старшая школа

«Алгебра и начала анализа, 10 – 11 класс», авт. М.И Башмаков.

Тема Основная цель
Графики тригонометрических функций Изучить свойства и графики тригонометрических функций, учащиеся должны хорошо усвоить вид графиков тригонометрических функций.
Графики показательной и логарифмической функции Изучить графики показательной и логарифмической функции

“Алгебра и начала анализа, 10 - 11”, авт. А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницин и др.

Графики тригонометрических функций Особое внимание нужно обратить на графическую интерпретацию свойств.Значительно расширит возможности учащихся в построении графиков функции рассмотрение вопроса о преобразовании графиков (параллельный перенос на заданный вектор, растяжение вдоль оси Ох), что позволит осознано строить графики гармонических колебаний
Применение производной к исследованию функции и построению её графика Существенное внимание следует уделить решению разнообразных задач связанных с иследованием функции.

“Алгебра и начала анализа, 10 - 11”, авт. Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др.

Тема Основная цель
Степенная, покозательная, логарифмическая функции их свойства и графики Познакомить учащихся с графиками этих функций. Познакомить их с многообразием свойств и графиков степенной функции в зависимости от значений оснований и покозателей степени. Особое внимание уделяется иллюстрации свойств функции по графику.
Тригонометрические функции и их графики. Научит учащихся строить графики тригонометрических функций. Учащиеся должны научится выполнять эскизы графиков, используя эти свойства, а также устонавливать эти свойства по графику.
Применение производной к построению графиков функций При изучении графика функций полезно показать построение графиков функций, которой не являются неприрывной на всей области определения. И особенности построения графиков четной и не четной функции.

Программа для школы с углубленным изучением математики.

«Алгебра, 8», авт. Н.Я. Виленкин, А.Н. Виленкин, Г.С. Сурвилло и др. «Алгебра, 9», авт. Н.Я. Виленкин, Г.С. Сурвилло, А.С. Симонов, А.И. Кудрявцев.

Тема
График функции. Простейшие преобразования графиков (параллельные переносы вдоль координатных осей). График функции y=k/x . График дробно – линейной функции. График функции вида y= Ö x, y= Ö (x-m)+n. Отражение свойств функции на графике. Преобразование графиков функций: симметрия относительно осей координат и относительно прямойy=x . Построение графиков кусочно-заданных функций. Построение графиков функций связанных с модулем. Примеры построения графиков рациональных функций. Графики функций y=[x], y={x} . Графики функций y=xn , y= Ö x .

«Алгебра, 8», «Алгебра, 9», авт. Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нелеков, С.Б. Суворова, «Учебные пособия, Алгебра. Дополнительные главы к школьному учебнику 8 (9) класса», авт. Ю.Н. Макарычев, Н.Г. Миндюк.

Тема
Построение преобразование графиков функций. График функции y=k/x . График дробно – линейной функции. График функции вида y= Ö x, y= Ö (x-m)+n. График квадратичной функции. Построение графиков функций. Графи

К-во Просмотров: 194
Бесплатно скачать Реферат: Построение графика функции различными методами (самостоятельная работа учащихся)