Реферат: Предмет экономической социологии как отрасли социологии. Метод социометрических измерений. Сущность и область применения
— возрастет удельный вес энергетических решений;
— еще более повысится роль научных исследований;
— возрастут требования к качеству производимой продукции, и применение новых технологий поможет в достижении требуемого уровня качества;
— некоторые новые отрасли вытеснят устаревшие традиционные.
Изложенные выше взгляды прогнозируют многосторонние изменения как в социальной отрасли, так и в различных отраслях производства и науки. Развитие международной экономики скажется стремительными изменениями в различных сферах и на разнообразных уровнях общества. От людей потребуется адаптация к переменам, чему может способствовать образование и переквалификация. Гибкость и адаптация требуют социальных знаний и даже социальной квалификации — это новая черта времени. Возможно, что владение социальной квалификацией, highsos, станет в будущем даже важнее, чем владение техникой, hightech.
2. Метод социометрических измерений. Сущность и область применения.
Успешность решения проблемы измерения является одной из главных компонент, составляющих понятие качества социологического исследования. Однако далеко не каждый социолог об этом задумывается. Более того, как показывает опыт, само выражение "проблемы измерения" часто вызывает недоумение: а существуют ли такие проблемы? В чем, собственно, они состоят?
Дадим некоторые предварительные определения.
Эмпирическая система (ЭС) интересующая исследователя – это совокупность реальных (эмпирических) объектов с выделенными соотношениями между ними. Последние часто можно выразить в виде некоторых отношений между объектами (любое отношение есть соотношение, но не наоборот), и тогда говорят об эмпирической системе с отношениями (ЭСО).
Пример ЭСО — совокупность сотрудников какого-то завода, рассматриваемых как "носителей" удовлетворенности своим трудом с заданным бинарным (т.е. определенным на парах объектов) отношением: "респондент А больше удовлетворен работой, чем респондент Б". Для одних пар это отношение может выполняться, для других нет. Но мы полагаем, что, каких бы респондентов мы ни взяли, разговор о выполнении этого отношения будет осмысленным (ниже мы будем подробнее обсуждать вопрос о подобной осмысленности). Подчеркнем, что ЭС отражает представление исследователя об; изучаемой реальности, процесс ее формирования по существу является моделированием. С учетом этого ЭС можно считать фрагментом реальности.
Математическая система (МС) – это совокупность математических объектов (чаще всего в качестве таковых выступают числа и тогда МС называется числовой) с выделенными соотношениями между ними. Когда последние задаются в виде некоторых отношений между объектами, говорят о математической системе с отношениями или о числовой системе с отношениями (МСО и ЧСО).
Измерение отображение некоторой ЭС в МС.
Подчеркнем, что измерение - это всегда моделирование и осуществляется оно как бы в два этапа: сначала мы строим ЭС, затем математическую модель этой системы. Цель такого моделирования — обеспечение возможности использования математики для решения социологических задач.
Шкала – это правило, определяющее, каким образом в процессе измерения каждому изучаемому объекту ставится в соответствие некоторое число или другой математический конструкт. Каждый такой конструкт будем называть результатом измерения объекта, или его школьным значением. Процесс получения шкальных значений называется шкалированием. Нередко понятие шкалы связывают только с использованием числовых МС.
Подчеркнем, что в соответствии с нашим пониманием измерения совокупность шкальных значений — это определенная модель реальности.
Общим местом стало рассмотрение в качестве основной специфической черты социологического измерения активное использование номинальных, порядковых, интервальных шкал.
Предположим, что мы приписываем респонденту число как обозначение, код его профессии. Ясно, что, анализируя полученные числа, мы можем судить лишь об их равенстве или неравенстве: из того, что два респондента закодированы одним числом, следует, что они имеют одинаковую профессию; разным числам отвечают разные профессии. Выражения типа 3 < 5 в таком случае становятся бессмысленными: они не отражают ничего реального. Это — номинальная шкала.
Ясно, что она отвечает отображению ЭСО с заданным отношением равенства в соответствующую ЧСО. Если же, например, каждому респонденту приписано число от 1 до 5 в соответствии с тем, как он ответил на вопрос типа: "Удовлетворены ли Вы своей работой?" (с вариантами ответов от "совершенно не удовлетворен" до "полностью удовлетворен", закодированными цифрами от 1 до 5 соответственно), то мы, кроме равенства и неравенства, можем судить также и о некотором порядке между полученными числами: если одному респонденту приписано число 3, а другому — 5, то считаем, что первый меньше удовлетворен работой, чем второй. Но соотношения типа 5—4=2— 1 остаются бессмысленными с содержательной точки зрения. Это — порядковая шкала. ЭСО в данном случае содержит два отношения — равенства и порядка.
Совокупность эмпирических отношений, отражаемых с помощью интервальной шкалы, богаче, она дает возможность отразить еще и порядок расстояний между шкалируемыми объектами.
Предположим, например, что мы измерили отношение студентов к учебе и в результате получили, что четырем респондентам у4, Бу В и /"оказались приписанными соответственно числа 1, 2, 3 и 8. Если мы знаем, что была использована порядковая шкала, то, интерпретируя результаты измерения, можно бытьуверенными только в том, что респондент А хуже всех относится к учебе, респондент Б — получше и т.д. При использовании же интервальной шкалы мы можем получить дополнительную информацию: различие по отношению к учебе между респондентами А и Б меньше, чем различие между респондентами В и Г . А такого рода сведения весьма полезны.
Итак, если мы получаем числа, для которых "физически" осмыслены равенства типа 5—4=2— 1 или 8 —3 > 3 -* 2, то считаем, что они отвечают интервальной шкале. Эта шкала обычно считается "хорошей" в том смысле, что соответствующие шкаль-ные значения в достаточной мере похожи на обычные числа (вопрос о смысле "похожести" часто даже не ставится; одна из наших задач — уточнить его). По интервальным шкалам обычно считают полученными значения таких признаков, как возраст или зарплата. ЭСО в данном случае содержит отношения равенства и порядка как для объектов, так и для расстояний между объектами.
Интервальные шкалы часто называют шкалами высокого типа, количественными, числовыми. Номинальные же и порядковые шкалы — шкалами низкого типа, качественными, нечисловыми . Смысл таких определений очевиден: числа, полученные с помощью шкал высокого типа, больше похожи на те числа, которые знакомы каждому из нас со школьной скамьи.
Переменную, значения которой нельзя получить сразу, задав, скажем, определенный вопрос в анкете и получив соответствующий ответ респондента, будем называть латентной (скрытой). В противоположном случае будем говорить о наблюдаемой переменной. Процесс получения значений наблюдаемой переменной называется прямым измерением.
Латентные переменные измеряются косвенным путем, с помощью определенных преобразований некоторых наблюдаемых, поддающихся адекватной интерпретации данных. (Представления о том, какой вид эти данные имеют и как они должны преобразовываться, должны опираться на определенные теоретические исследовательские концепции, априорные модельные представления социолога).
Отметим, что только что введенное определение латентной переменной несколько расходится с тем, что под таковой часто понимают социологи. Мы имеем в виду ситуацию, когда латентной называют переменную, относительно которой заранее неизвестно не только то, как ее измерить, но и то, что она из себя представляет: исследователь догадывается, что наблюдаемое поведение респондента (чаще всего — ответы на вопросы предложенной ему анкеты) объясняется действием одной или нескольких скрытых переменных, но не может априори дать им название (подобная ситуация имеет место, например, при использовании факторного анализа).
Приведенное же выше определение предполагает, что исследователь вполне может заранее знать, какая латентная переменная его интересует. Латентность же ее заключается в том, что ее измерение осуществляется не в процессе сбора данных, а в процессе анализа некой первичной информации. Другими словами, мы называем латентной переменную, значения которой получаются в результате так называемого производного измерения .
В социологии между указанными двумя ситуациями нет непреодолимой пропасти. Для социолога любая переменная, находящаяся в результате производного измерения, всегда в той или иной мере является латентной: исследователь практически никогда не может быть уверен, что предположение о самом существовании этой переменной адекватно моделирует ситуацию, что наблюдаемое поведение отражает именно то, что интересует исследователя, и т.д. И продвинутые способы измерения всегда дают возможность пересмотра социологом наименования переменной или вообще отказа от убежденности в ее существовании.
Основой модельных представлений, заложенных в известных методах шкалирования, является сопоставление с каждой измеряемой переменной (в том числе латентной) некоторой протяженности, психологического континуума — прямой линии (числовой прямой, числовой оси), на которой мы размещаем те объекты, которым в результате измерения должны приписать числа (термин "континуум" означает непрерывность). Это предположение является естественным, в его целесообразности не сомневается ни один социолог, но в нем имеются свои "подводные камни".
Так, на практике исследователь иногда забывает о том, что, приписывая числа объектам, т.е. размещая их на указанной прямой, он, как правило, не определяет место размещения объекта однозначно, не "прибивает гвоздями" объект к оси. "Числа", используемые социологом, заданы не однозначно, а как бы "плавают" на оси. Например, как нетрудно проверить, для определенных выше типов шкал эквивалентными являются совокупности шкальных значений, представленные в табл. 1.1.
Таблица 1.1. Свойства шкал рассматриваемых типов
Тип шкалы | Отношения, сохраняю- щиеся при отображении ЭСО в ЧСО | Пример эквива- лентных совокупнос- тей шкальных значений |
Номинальная | а= Ь | 1 2 3 4 5 10 31 2 5 118 |
Порядковая | а = Ь, а > Ь | 12345 10 31 44 100 118 |
Интервальная | а = Ь, а > Ь а- Ь= с – d а - Ь> с - d | 1 2 3 4 5 10 31 52 73 94 |