Реферат: Приближенное решение уравнений методом хорд и касательных

Приближенное решение уравнений методом хорд и касательных

Подготовил: Григоренко М.В.

Студент группы ФГК-98

Магнитогорск –1999

Ведение

Для решения были предложены следующие уравнения:

x3 – 4x – 2 = 0 и 4x = cosx

При решении каждого уравнения вводится соответствующая функция (¦(x) = x3 – 4x – 2 и ¦(x) = 4x – cosx), а решениями уравнения являются нули соответствующей функции.

Следует отметить, что обе функции непрерывны и дважды дифференцируемы на всей области определения (–¥ ; ¥).

Необходимо найти приближенные решения уравнений с заданной точностью (0,001). С целью упростить работу (в частности, избавить человека от однотипных арифметических и логических операций) и обеспечить максимальную точность вычислениям, при решении данных уравнений была использована ЭВМ и программы на языке Turbo Pascal 7.0, созданные специально для решения данных задач.

Способ хорд

Теоретическая часть

Данный способ можно свести к следующему алгоритму:

1. Разделим всю область исследования (Df) отрезки, такие, что внутри каждого отрезка [x1 ;x2 ] функция монотонная, а на его концах значения функции ¦(x1 ) и ¦(x2 ) разных знаков. Так как функция ¦(x) непрерывна на отрезке [x1 ;x2 ], то ее график пересечет ось ОХ в какой либо одной точке между x1 и x2 .

2. Проведем хорду АВ, соединяющую концы кривой y = ¦(x), соответствующие абсциссам x1 и x2 . Абсцисса a1 точки пересечения этой хорды с осью ОХ и будет приближенным значением корня. Для разыскания этого приближенного значения напишем уравнение прямой АВ, проходящей через две данные точки A(x1 ;¦(x1 )) и B(x2 ; ¦(x2 )), в каноническом виде:

;

Учитывая, что y = 0 при x = a1 , выразим из данного уравнения a1 :

3. Чтобы получить более точное значение корня, определяем ¦(а1 ). Если на данном отрезке мы имеем ¦(x1 )<0, ¦(x2 )>0 и ¦(a1 )<0, то повторяем тот же прием, применяя формулу (1) к отрезку [a1 ;x2 ]. Если ¦(x1 )>0, ¦(x2 )<0 и ¦(a1 )>0, то применяем эту формулу к отрезку [x1 ;a1 ]. Повторяя этот прием несколько раз, мы будем получать все более точные значения корня а2 , а3 и т.д.

Пример 1. x3 – 4x – 2 = 0

¦(x) = x3 – 4x – 2,

¦¢(x) = 3x2 – 4,

производная меняет знак в точках

¦¢(x) + – +

¦(x) х

функция ¦(x) монотонно возрастает при xÎ(–¥;] и при хÎ[;¥), и монотонно убывает при xÎ[;].

Итак, функция имеет три участка монотонности, на каждом из которых находится по одному корню.

Для удобств дальнейших вычислений сузим эти участки монотонности. Для этого подставляем наугад в выражение ¦(х) наугад те или иные значения х, выделим внутри каждого участка монотонности такие более короткие отрезки, на концах которых функция имеет разные знаки:

¦(–2)= –2,

¦(–1)= 1,

¦(0)= –2,

¦(1)= –5,

¦(2)= –2,

¦(3)= 13.

Таким образом, корни находятся в интервалах

(–2;–1), (–1;0), (2;3).

Пункты 2 и 3 алгоритма выполняются при помощи ЭВМ (текст соответствующей программы приводится в Приложении 1) Программа выводит последовательность приближенных значений с увеличивающейся точностью для каждого из участков:

a1=-0.66667 при х1=-1.00000 и x2=0.00000

a2=-0.56250 при х1=-0.66667 и x2=0.00000

a3=-0.54295 при х1=-0.56250 и x2=0.00000

a4=-0.53978 при х1=-0.54295 и x2=0.00000

a5=-0.53928 при х1=-0.53978 и x2=0.00000

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 143
Бесплатно скачать Реферат: Приближенное решение уравнений методом хорд и касательных