Реферат: Приближенное вычисление корней в уравнения

x1 = x2-(b- x1)*f(x1)/f(b)-f(x1)

( в формуле (2) заменяем x1 на x2, а на x1 ); значение x2 оказывается между x1 и Е. Рассматриваем отрезок [x2, b] и находим новое приближённое x3, заключённое между x2 и Е и. т. д. В результате получим последовательность а<x1<x2<x3<…<xn<…<E(3), всё более и более точных приближённых значений корня, причём хn+1 через xn выражается формулой:

хn+1= xn-(b- xn)*f(xn)/f(b)-f(xn) (4)

Для оценки погрешности соответсвующих приближений воспользуемся формулой Лагранжа:

f(xn)-f(E)=f`(c)*( xn-E) (xn<c<E)

или, поскольку

f(E)=0: f(xn)=f`(c)( xn-E),

откуда:

xn-Е= f(xn)/ f`(c)

Если обозначить через m наименьшее значение |f`(х)| на рассматриваемом отрезке, то для оценки погрешности получим формулу:

|xn-E|<|f`( xn)|/m (5)

Эта формула, заметим, совершенно не связана со способом отыскивания величин xn и, следовательно, приложила к приближённым значениям корня, получаемым любым методом. Формула (5) позволяет судить о близости xn к Е по величине значения f(xn). Однако в большинстве случаев она даёт слишком грубую оценку погрешности, т. е. фактическая ошибка оказывается значительно меньше.

Легко доказать, что последовательность приближений:

x1,x2,x3,…xn,… (6)

для корня Е, получаемых по способу хорд, всегда сходится к Е. Из случая, рассматривающегося выше, мы видим, что последовательность (6) - монотонная и ограниченная. Поэтому она имеет некоторый предел n<E. Переходя к пределу в равенстве (4), в силу непрерывности f(x) получим:

n=n-(b-n)f(n)/f(b)-f(n)

откуда F(n)=0. Так как f(x) возрастает на отрезке [a, b], то уравнение f(х)=0 имеет единственный корень, и этим корнем по условию является Е. Поэтому n=E, т. е. lim xn=E.

Пример № 1. Методом хорд найдём положительный корень уравнения

х^4-2х-4=0

с точностью до 0,01.

Решение:

Положительный корень будет находиться в промежудке (1; 1,7), так как f(1)=-5<0, а f(1,7)=0,952 >0

Найдём первое приближённое значение корня по формуле (2):

х1=1-91,7-1)* f(1)/ f(1,7)- f(1)=1,588;

так как f(1,588)=-0,817<0, то, применяя вторично способ хорд к промежутку (1,588; 1,7), найдём второе приближённое значение корня:

х2= 1,588-(1,7-1,588) f(1,588)/ f(1,7)- f(1,588)=1,639;

f(1,639)=-0,051<0.

Теперь найдём третье приближённое значение:

х3=1,639-(1,7-1,639) f(1,639)/ f(1,7)- f(1,639)=1,642;

К-во Просмотров: 228
Бесплатно скачать Реферат: Приближенное вычисление корней в уравнения