Реферат: Приближенное вычисление корней в уравнения
х
Содержание.
1. Приближённое решение уравнений :
1.1 Способ хорд (или способ линейной интерполяции).
1.2 Способ касательных (или способ Ньютона).
1.3 Комбинированный способ (комбинированное применение способов хорд и касательных).
2. Заключение.
3. Список литературы.
Приближённое решение уравнений.
Если квадратные уравнения решали уже древние греки, то способы решения алгебраических уравнений третьей и четвёртой степени были открыты лишь в XVI веке. Эти классические способы дают точные значения корней и выражают их через коэффициенты уравнения при помощи радикалов различных степеней. Однако эти способы приводят к громоздким вычислениям и поэтому имеют малую практическую ценность.
В отношении алгебраических уравнений пятой и высших степеней доказано, что в общем случае их решения не выражаются через коэффициенты при помощи радикалов. Не выражаются в радикалах, например, корни уже такого простого по виду уравнения, как:
х^5-4х-2=0
Сказанное, однако, не означает отсутствия в науке методов решения уравнения высших степеней. Имеется много способов приближенного решения уравнений - алгебраических и неалгебраических (или, как их называют, трансцендентных), позволяющих вычислять их корни с любой, заранее заданной степенью точности, что для практических целей вполне достаточно.
На простейших из таких способов мы и остановимся, причём речь будет идти о вычислении действительных корней.
Пусть нужно решить уравнение:
f(x)=0 (1)
Если обратиться к рисунку, то каждый корень уравнения (1) представляет собой абсциссу точки пересечения графика функции y=f(х)
C осью Ох (рисунок №1)
С помощью графика функции или каким-нибудь иным способом обычно удаётся установить приблизительные значения корней. Это позволяет для каждого корня получить грубые приближения по недостатку и по избытку. Такого рода грубых приближений во многих случаях оказывается достаточно, чтобы, отправляясь от них, получить все значения корня с требуемой точностью. Об этом и пойдёт речь.
Итак, пусть корень Е уравнения (1) "зажат" между двумя его приближениями а и b по недостатку и по избытку а< E<b . При этом будем предполагать, что f(х), f`(х) ,f``(х) непрерывны на отрезке [ а, b ], причём f`(х) и f``(х) сохраняют знак. Сохранение знака у f`(х) говорит о монотонности f(х) (и, следовательно, f(a) u f(b) имеют разные знаки). Сохранение же знака у f``(х) означает, что выпуклость кривой y=f(х) для всех х отрезка [ а, b ] обращена в одну сторону. На рисунке №2 изображены 4 случая, отвечающих возложенным комбинациям знаков у f`(х) и f``(х) .
Способ хорд (или способ линейной интерполяции).
Проведём хорду АВ (рисунок№3) и за первое приближённое значение корня примем абсциссу x1 точки С пересечения хорды с осью Ох.
Уравнение хорды имеет вид:
y-f(a)/f(b)-f(a)=x-a/b-a.
Поэтому в точке С:
-f(a)/f(b)-f(a)= x1-a/b-a
откуда:
x1=a- (b-a)*f(a)/ f(b)-f(a)
Рассмотрение всех четырёх случаев, изображённых на рисунке №2, показывает, что точка x1 лежит между a и b с той стороны от Е, где f(х) имеет знак, противоположный знаку f``(х).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--