Реферат: Применение физики в криминалистических исследованиях

В связи с развитием криминалистических аналитических инструментальных методов последовательно расширяется круг исследуемых объектов, в который в настоящее время включаются жидкие и газообразные, сыпучие и другие тела, не имеющие устойчивой внешней формы.

Объекты криминалистической идентификации выделяются и индивидуализируются по комплексу свойств внутреннего строения объекта, а именно: а) общему компонентному составу (структуре) объекта (размещению его компонентов); б) субмикроскопической структуре; в) химическому составу – элементному, молекулярному, изотопному; г) фракционному составу – виду и соотношению компонентов (например, связующих наполнителей, пигменту лакокрасок); д) физическим (или физико-химическим) константам – твердости, температуры плавления, теплоемкости, электропроводности, плотности и т.п.

3.2. Методы и техника исследования состава и внутренней структуры

объектов

Методы криминалистического исследования могут классифицироваться в зависимости от характера изучаемых свойств для исследования:

1)морфологических свойств объекта, в том числе отображающихся в следах (визуальные, измерительные, фотографические, микроскопические, иные физико-технические);

2) компонентного состава смесей, сложных разнокачественных частей изделия, агрегата. Для этого наряду с вышеназванными, могут использоваться хроматографические исследования, рентгеновский фазовый анализ, биологический анализ фракционного состава почвы и др.;

3) внутренней структуры объекта: инртоскопические, микроскопические, кристаллографические исследования, рентгеновский фазовый анализ, рентгено-структурный анализ и т.п.;

4) физических констант – цвета, упругости, проводимости, магнитных, электрических и других свойств – специализированные физико-технические устройства, приборы;

5) атомного (элементного) состава объекта – вещественного доказательства – группа спектральных методов анализа и др.;

6) молекулярного состава объекта – вещественного доказательства – комплекс методов молекулярной спектроскопии;

7) физико-химических свойств объектов экспертизы –электронно-химические методы (полярография, электрофорез, электрография).

Рассмотрим общие характеристики и возможности отдельных методов для изучения состава и внутренней структуры вещественных доказательств.

3.2.1. Методы анализа химического состава

3.2.1.1. Атомно–эмиссионная спектрометрия

Атомно-эмиссионная спектрометрия применяется как метод элементного анализа вещества. Принципиально метод основан на том, что измеряются спектры испускания (разность энергии электронов на энергетических уровнях, расположенных на периферии атома, то есть валентных электронов). Поскольку эти величины характеристические для каждого элемента, по положению линий в эмиссионных спектрах можно судить о составе исследуемого вещества.

Известно, что при нагревании тела скорость перемещения (диффузии) отдельных компонентов увеличивается По мере увеличения температуры твердого тела, прежде всего, разрушается кристаллическая решетка, затем вещество переходит в жидкое состояние и, в конце концов, происходит испарение (переходит в пар). Что же произойдет при дальнейшем повышении температуры? Представим себе, танцевальные пары в переполненном зале вынуждены двигаться все быстрее и быстрее; столкновения станут неизбежны со всеми вытекающими последствиями. В паровой фазе также при нагревании, то есть при поступлении дополнительной энергии, молекулы вынуждены разрушаться, то есть диссоциировать на отдельные атомы. Энергию, сообщаемую атомам при многократных соударениях, прежде всего воспримут электроны, расположенные на внешних оболочках, то есть валентные электроны. Допустим, что после очередного удара валентный электрон поглощает дополнительную энергию. Если последняя достаточна для перехода электрона на незанятый электронный уровень с более высокой энергией, совершается соответствующий электронный переход, и атом оказывается в так называемом возбужденном состоянии. Возбужденное состояние атома неустойчиво, и рано или поздно электрон вновь возвратится на свою основную орбиту, и атом потеряет приобретенную энергию, испуская фотон (рис.6).

Итак, энергия излучения (фотона) равна разности энергетических уровней двух электронных орбит, между которыми произошел переход, и, как мы уже говорили, эта величина зависит от природы атома. За исключением металлов, составляющих первую группу периодической системы, все атомы обладают несколькими валентными электронами, расположенными, как правило, на нескольких валентных электронных орбитах (уровнях). Таким образом, для переходов валентных электронов может быть использовано несколько орбит, и в зависимости от того, на какой энергетический уровень выйдет электрон при переходе атома в возбужденное состояние, меняется и энергия фотона, испускаемого при возвращении атома в основное состояние. Поэтому атом характеризуется не одной полосой испускания, а набором (спектром) этих полос.

Энергия фотонов и длина волны излучаемого света связаны обратной пропорциональной зависимостью: чем выше энергия излучения, тем меньше длина волны. При переходах валентных электронов испускаются фотоны с длинами волн, соответствующими электромагнитному излучению в видимой или ультрафиолетовой области спектра. Длину волны, то есть энергию, излучения в видимой области можно оценить по получающейся окраске.

При изучении спектров испускания (эмиссионных спектров) к пробе необходимо подвести энергию, достаточную для того, чтобы разорвать связи между атомами, то есть атомизировать вещество, а затем возбудить образовавшиеся атомы. Испускаемые фотоны фокусируют, разделяют по энергиям и оценивают излучение по энергии при интенсивности (рис.7).

Для получения энергии, необходимой для атомизации пробы и возбуждения образовавшихся атомов, можно использовать различные источники. При использовании высокотемпературных пламенных источников основную роль для возбуждения атомов играют многократные столкновения, о которых уже говорилось. В качестве источника возбуждения используют и дуговой разряд, то есть разряд между двумя электродами, один из которых содержит анализируемую пробу. При дуговом способе возбуждения атомы получают дополнительную энергию не только в результате столкновений, но и благодаря увеличению кинетической энергии электронов. В последние годы появились новые, в частности плазменные, эмиссионные источники. Высокочастотный плазменный «факел» по существу – это разряд в аргоновой атмосфере. Проба в виде аэрозоля поступает в высокотемпературное пламя разряда, а источником возбуждения служит высокотемпературная плазма, образованная ионами и электронами, возникающими при высокочастотных колебаниях поля.

Находясь в возбужденном состоянии, атомы излучают свет разной длины волны. Для выделения характеристического излучения используют разные оптические приспособления, основанные на преломлении и фокусировке света. Если свет, выходя из узкой щели, встречает на пути стеклянную призму (углы призмы специально подбираются), то световой поток делится на отдельные компоненты, которые затем проектируются на экране в виде нескольких цветных линий (рис.8). В последнее время появились новые оптические устройства, основанные на совместном применении явлений дифракции и интерференции. Аналогичные результаты дает и использование оптических решеток с набором щелей (рис.9).

Разложенный свет содержит собственные окрашенные возбужденные компоненты – фон спектра, на котором четко выделяются более яркие линии возбужденных атомов анализируемого вещества.

При появлении метода атомно–эмиссионного анализа дифракционную картину регистрировали на фотопластинке. Этот способ регистрации спектров широко используется и в настоящее время. Спектр на проявленной фотопластинке представляет собой набор различных по интенсивности довольно четких темных линий (полос). Для того чтобы определить состав образца, необходимо полосы на спектре идентифицировать (отнести по длинам волн). Подобную задачу можно решить, совместив изображения на фотопластинке со шкалой длин волн, но на практике лучше всего зарекомендовал себя иной метод. На верхней или нижней части той самой фотопластинки, на которой записывают спектр анализируемой пробы, предварительно отпечатывают спектр металлического железа. Спектр железа содержит множество линий, и, зная их точное положение, можно легко провести градуировку полос в спектре объекта неизвестного состава. Фирмы, выпускающие детектирующие устройства к атомно–эмиссионным спектрометрам, поставляют фотопластинки с нанесенным на них спектром железа, где обозначены также положения характеристических линий некоторых других элементов. После необходимой обработки спектр с фотопластинки проецируется на небольшой экран и путем сравнения положений линий в спектрах железа и анализируемого образца проводится отнесение неизвестных линий.

В последнее время для регистрации излучения применяются уже электронные устройства в комбинации с ЭВМ. Внедрение компьютеров позволяет использовать для идентификации вещества не только несколько отдельных характеристических линий, а весь спектр, разрешенный с точностью до нанометра.

3.2.1.2. Атомно-абсорбционная спектрометрия

Еще один метод спектрального анализа – атомно-абсорбционная спектрометрия – представляет собой очень распространенный метод элементного анализа. Метод основан на измерении разности энергетических уровней валентных электронов, то есть по существу на тех же самых физических принципах, что и атомно-эмиссионная спектрометрия, но в атомной абсорбции используется не излучение, а поглощение световых квантов. В зависимости от своей природы атомы поглощают кванты определенной энергии причем, чем большую энергию поглощают электроны, тем на более отдаленные от ядра орбиты они попадают. Итак, если анализируемая проба переведена в атомарное состояние, то при прохождении света определенной длины волны поток квантов на выходе должен ослабеть. Положение полосы поглощения в спектре зависит от природы определяемых атомов, а уменьшение интенсивности поглощения – от количества этих атомов.

В методе атомно-абсорбционной спектрометрии пробу надо предварительно испарить, а сухой остаток атомизировать. Естественно, что проще всего атомизация протекает при тепловом воздействии. Правда, температура в атомизаторах ниже, чем в источниках возбуждения атомно-эмисс

К-во Просмотров: 703
Бесплатно скачать Реферат: Применение физики в криминалистических исследованиях