Реферат: Применение MS Excel для решения статистических задач
Для решения задачи используем режим работы «Ранг и персентиль». Результаты выполнения данного режима приведены ниже в таблице.
B | C | D | E | F | G | H | I | ||
35 | Точка | Столбец1 | Ранг | Процент | Точка | Столбец1 | Ранг | Процент | |
36 | 3 | 4102 | 1 | 100,00 | 3 | 1563 | 1 | 100,00 | |
37 | 1 | 2954 | 2 | 88,80 | 2 | 930 | 2 | 88,80 | |
38 | 7 | 2813 | 3 | 77,70 | 8 | 858 | 3 | 77,70 | |
39 | 5 | 2625 | 4 | 66,60 | 1 | 856 | 4 | 66,60 | |
40 | 4 | 2350 | 5 | 55,50 | 7 | 815 | 5 | 55,50 | |
41 | 10 | 2264 | 6 | 44,40 | 4 | 682 | 6 | 44,40 | |
42 | 6 | 1795 | 7 | 33,30 | 10 | 661 | 7 | 33,30 | |
43 | 8 | 1751 | 8 | 22,20 | 5 | 616 | 8 | 22,20 | |
44 | 9 | 1700 | 9 | 11,10 | 6 | 495 | 9 | 11,10 | |
45 | 2 | 1605 | 10 | 11,10 | 9 | 467 | 10 | 11,10 |
По данным этой сгенерированной таблицы заполняем в следующей таблице графы Ранг и Ранг
, на основании которых производим вычисления квадратов разности рангов
.
B | C | D | E | F | G | |
21 | Номер предприятия | Уставный капитал, млн. руб. Х | Число выставленных акций Y | Ранг ![]() | Ранг ![]() | Квадрат разности рангов |
22 | 1 | 2954 | 856 | 2 | 4 | 4 |
23 | 2 | 1605 | 930 | 10 | 2 | 64 |
24 | 3 | 4102 | 1563 | 1 | 1 | 0 |
25 | 4 | 2350 | 682 | 5 | 6 | 1 |
26 | 5 | 2625 | 616 | 4 | 8 | 16 |
27 | 6 | 1795 | 495 | 7 | 9 | 4 |
28 | 7 | 2813 | 815 | 3 | 5 | 4 |
29 | 8 | 1751 | 858 | 8 | 3 | 25 |
30 | 9 | 1700 | 467 | 9 | 10 | 1 |
31 | 10 | 2264 | 661 | 6 | 7 | 1 |
32 | ![]() | 120 |
Заключительным этапом решения задачи является вычисление коэффициента Спирмена по формуле
,
подставляя в которую исходные данные и рассчитанные данные задачи получим
.
Значение коэффициента Спирмена свидетельствует о слабой связи между рассматриваемыми признаками. [9]
Регрессия
Регрессионный анализ называют основным методом современной математической статистики для выявления неявных и завуалированных связей между данными наблюдений. Электронные таблицы делают такой анализ легко доступным. Таким образом, регрессионные вычисления и подбор хороших уравнений - это ценный, универсальный исследовательский инструмент в самых разнообразных отраслях деловой и научной деятельности (маркетинг, торговля, медицина и т. д.). Усвоив технологию использования этого инструмента, можно применять его по мере необходимости, получая знание о скрытых связях, улучшая аналитическую поддержку принятия решений и повышая их обоснованность.
Линейный регрессионный анализ заключается в подборе графика для набора наблюдений с помощью метода наименьших квадратов. Регрессия используется для анализа воздействия на отдельную зависимую переменную значений одной или более независимых переменных. [8]
Выборка
Создает выборку из генеральной совокупности, рассматривая входной диапазон как генеральную совокупность. Если совокупность слишком велика для обработки или построения диаграммы, можно использовать представительную выборку. Кроме того, если предполагается периодичность входных данных, то можно создать выборку, содержащую значения только из отдельной части цикла. [5]
Двухвыборочный z-тест для средних
Двухвыборочный z-тест для средних с известными дисперсиями используется для проверки гипотезы о различии между средними двух генеральных совокупностей.
1.5. Статистические функции
FРАСП Возвращает F-распределение вероятности. Эту функцию можно использовать, чтобы определить, имеют ли два множества данных различные степени плотности. Например, можно исследовать результаты тестирования мужчин и женщин, окончивших высшую школу, и определить отличается ли разброс результатов для мужчин и женщин.[10]
FРАСПОБР Возвращает обратное значение для F-распределения вероятности
БЕТАОБР Возвращает обратную функцию к интегральной функции плотности бета-вероятности
БЕТАРАСП Возвращает интегральную функцию плотности бета-вероятности
БИНОМРАСП Возвращает отдельное значение биномиального распределения
ВЕЙБУЛЛ Возвращает распределение Вейбулла
ВЕРОЯТНОСТЬ Возвращает вероятность того, что значение из диапазона находится внутри заданных пределов
ГАММАНЛОГ Возвращает натуральный логарифм гамма функции
ГАММАОБР Возвращает обратное гамма-распределение
ГАММАРАСП Возвращает гамма-распределение
ГИПЕРГЕОМЕТ Возвращает гипергеометрическое распределение
ДОВЕРИТ Возвращает доверительный интервал для среднего значения по генеральной совокупности
КВАРТИЛЬ Возвращает квартиль множества данных
КВПИРСОН Возвращает квадрат коэффициента корреляции Пирсона
КРИТБИНОМ Возвращает наименьшее значение, для которого биномиальная функция распределения меньше или равна заданному значению
ЛГРФПРИБЛ Возвращает параметры экспоненциального тренда
ЛИНЕЙН Возвращает параметры линейного тренда
ЛОГНОРМОБР Возвращает обратное логарифмическое нормальное распределение
ЛОГНОРМРАСП Возвращает интегральное логарифмическое нормальное распределение