Реферат: Применение сингулярной матрицы в химии
Здесь - ортогональные матрицы, aS диагональная.
Можно получить сингулярное разложение А:
Сингулярное разложение матрицы В будет получено посредством следующего итерационного процесса:
Здесь - ортогональные матрицы, а Bk - верхняя двухдиагональная матрица для всех k.
Заметим, что диагональные элементы матрицы полученной непосредственно из этой итерационной процедуры, не являются в общем случае ни положительными, ни упорядоченными. Эти свойства обеспечиваются специальной последующей обработкой.
Сама итерационная процедура представляет собой (QR-алгоритм Фрэнсиса, адаптированный Голубом и Райншем к задаче вычисления сингулярных чисел.
Глава 2. Применение сингулярных матриц при многомерном анализе химических данных факторными методами
2.1. Общие сведения о факторных методах
Многомерный анализ данных играет все возрастающую роль во многих научных дисциплинах, включая науки о земле, жизнеобеспечении, в социологии, а также менеджменте. Однако в химии эти методы развивались не так быстро. Хотя основы методов были созданы в начале века, а области их применения были определены в тридцатых годах , первые случаи их использования отмечены только в шестидесятых годах. Действительно, наиболее часто применяемыми в хемометрике методами стали факторный анализ (ФА), анализ (метод) главных компонент (МГК) и факторный дискриминантный анализ (ФДА).
Хемометрика преследует две цели :
· извлечение максимума информации за счет анализа химических данных;
· оптимальное планирование измерительных процедур и экспериментов.
Первая цель может быть подразделена на две:
1) описание, классификация и интерпретация химических данных;
2) моделирование химических экспериментов, процессов и их последующая оптимизация.
Из всего многообразия видов обработки наборов химических данных можно выделить некоторые наиболее характерные области применения:
· многокомпонентный анализ спектрометрических или хромато-графических данных различных смесей. Цель анализа — определение числа компонентов и иногда также их идентификация. Для решения задач, связанных с равновесиями в растворе и сложной кинетикой, используется факторный анализ;
· поиск неизмеряемых факторов, отражающих те физико-химические свойства, которые оказываются слишком сложными для точного моделирования, например, таких, как:
а) времена задержки для хроматографии;
б) данные по химическому сдвигу;
в) константы равновесия и кинетические константы;
г) данные по степени превращения и селективности.
Интерпретация этих факторов может высветить новые явления или подчеркнуть те физические свойства, которые помогут объяснить исходные наблюдения:
· сведение наборов химических данных с большим числом переменных (которые часто коррелируют, а иногда и избыточны) к наборам с меньшим числом независимых переменных. Каждая точка будет характеризоваться меньшим числом новых переменных, которые затем могут быть использованы для модельных исследований. Этот метод можно применять для многокомпонентных природных продуктов со сложными физико-химическими свойствами (эфирные масла, продукты из сырой нефти и т. д.), а также для замеренных в ходе процесса наборов данных;
· анализ многомерных наборов химических данных посредством графического представления объектов и переменных в векторном подпространстве с меньшим числом измерений. Подобное представление позволяет осуществить обзор всего набора данных для классификации объектов и объяснения их положения.
Цель данного пункта моего реферата — введение в методы факторного анализа с рассмотрением его теоретических основ и практических приложений.
Факторный анализ (ФА), анализ главных компонент (МГК) и факторный дискриминантный анализ (ФДА) будут представлены на различных специально подобранных примерах, иллюстрирующих множество областей их применения.
2.2. Операции с матрицами и многомерный анализ данных
Применение линейной алгебры в анализе данных будет проиллюстрировано на примере УФ-спектроскопии сложной смеси. В соответствии с законом Ламберта — Бера при данной частоте v полное поглощение образца, состоящего из l поглощающих компонентов, определяется как
, где – молярный коэффициент поглощения компонента j, а – молярная концентрация компонента j.
Если измерение проводится при п различных частотах, тогда единственное уравнение заменяется системой линейных уравнений