Реферат: Применение сингулярной матрицы в химии
С использованием матриц следующую систему линейных уравнений можно записать в виде:
Для дальнейшего упрощения выражения запишем матрицу поглощения (А) как произведение матриц коэффициентов экстинкции () и концентрации (С):
(A) = () (C)
Следует отметить, что матричные расчеты и их компьютерное применение дали толчок быстрому развитию многомерного анализа данных.
2.3. Свойства сингулярной матрицы
Матрица (X— Х)'(Х—) — квадратная, симметричная и положительно определенная. Такие матрицы проявляют некоторые свойства, особенно полезные при анализе данных:
· собственные значения, действительные, а также положительные или равные нулю;
· число ненулевых собственных значений равняется рангу матрицы;
· два собственных вектора, связанные с двумя различными собственными значениями ортогональны.
В качестве иллюстрации этих свойств, а также чтобы показать их важность при анализе данных можно взять матрицу дисперсий-ковариаций и определим собственные значения матрицы методом наименьших квадратов.
Решая уравнение, получаем два собственных значения:
= 0 ,
что дает =1 и =0,6.
Как , так и действительны и положительны. Ранг матрицы должен равняться 2, поскольку в системе существуют два ненулевых собственных значения. Компоненты собственных векторов, связанные с каждым из собственных значений, получаем из определения собственных векторов следующим образом:
для первого собственного значения
для второго собственного значения
Отметим, что два связанных с каждым из собственных значений вектора действительно ортогональны (т. е. их скалярное произведение равно нулю). В этих двух наборах векторов мы можем выбрать два нормированных вектора, которые соответственно составляют ортогональный базис:
Векторы и действительно аналогичны тем, которые определены в разделе 5.2.1, а координаты матрицы данных относительно этой точки отклика уже вычислены:
( Y) = ( X-) ( U)
Заключение
Факторные методы (в том числе связанные с использованием сингулярных матриц) ныне широко применяются для анализа данных в химии. Они в основном носят описательный характер и позволяют существенно сократить размерность массива данных при минимальной потере информации и возможности их графического представления.
Хотя эти методы и не обладают возможностями моделирования, как регрессионный анализ, их можно применять для идентификации:
· компонентов в многокомпонентных смесях, проанализированных посредством ультрафиолетового, инфракрасного и видимого излучения, флюоресценции, масс-спектрометрии, хроматографии (ФА);
· реальных физических факторов, управляющих экспериментальными данными (целевой факторный анализ):
· группы, к которой можно отнести новый объект в системе исходных групп, на которые был классифицирован первоначальный набор данных (ФДА).