Реферат: Применение ТСО в математике

в) Против выборочных вопросов приведенного выше типа иногда выдвигаются возражения не очень, правда, обоснованные, что приводимые среди ответов для выбора ошибочные ответы могут приниматься учениками в качестве верных. Это опасение устраняется в перекрестновыборочных разновидностях этого способа ввода, когда в ходе решения приходится установить соответствие между элементами множества вопросов и множества ответов на них. Вот характерные примеры:

Пример 1. Установите соответствие между количеством граней многогранников, названных в левой колонке, и числами в правой колонке. (В качестве ответов последовательно введите коды чисел правой колонки.)

1. Четырехугольная пирамида

2. Октаэдр.

3. Икосаэдр.

4. Параллелограмм.

5. Додекаэдр.

20.

5.

12.

8.

6.

г) Остановимся еще на одной разновидности перекрестно-выборочиого способа ввода, которую назовем условно аддитивно-выборочной. Для того чтобы заставить ученика подвергнуть анализу совокупность нескольких вопросов, можно поступить так.

Среди приводимых ниже функций выбрать только четные. В качестве ответов ввести номера (коды) четных функций и их сумму.

1. у=5х2 +cos x

2. у=2x2 -5

3. y=(x-2)/(x+3)

4. у=tg x-sin x

5. y=(cos x +2)/(x2 +4)

6. y=2+tg x

В качестве ответа на данный вопрос следует ввести числа 1, 2 5 или 1+2+5) = 8. Последнее число получится только после анализа всей совокупности вопросов. К сожалению, не во всех конструкциях ТСОС ввод этой разновидности выборочного способа осуществляется достаточно просто.

Весьма совершенным в условиях преподавания математики способом машинного ввода является так называемый числовой ввод когда ответом служит некоторое натуральное число, определяющееся в ходе решения. Числовой способ ввода можно рассматривать как расширение выборочного ввода: ответом служит одно из ограниченного множества чисел (первого десятка, сотни и т.д.). В случае, если в качестве ответов получаются дробные или иррациональные числа, можно применить число- кодированный ввод.

Вот несколько примеров.

1. Чему равен корень уравнения

(Ответ. Число 2 определяется решением. Это число и вводится в ТСОС.)

2. Решите уравнение х+lg(1+2x )=х lg 5+lg 6.

(Ответ. 1 - определяется и вводится в ТСОС.) Оба примера демонстрируют естественность применения числового ввода при решении уравнений.

3. Плоскость, проходящая через сторону основания правильной треугольной призмы и середину противолежащего угла, образует с основанием угол в 45°. Сторона основания 1 см. Определите площадь боковой поверхности.

К-во Просмотров: 261
Бесплатно скачать Реферат: Применение ТСО в математике