Реферат: Примесная краевая фотопроводимость полупроводников
Краткая история вопроса. Весьма примечательна проблема участия экситонов в фотопроводимости. Являясь нейтральным (хотя и подвижным) образованием, экситон не может непосредственно принимать участие в переносе электрического заряда [1]. Я. И. Френкель писал, что «у многих диэлектриков и полупроводников поглощение света не всегда сопровождается появлением электропроводности» [1].
Однако еще в 1938 г. Н. Мотт указал [2] на возможность возникновения свободных носителей тока в результате теплового распада экситонов. Дж. Франк и Е. Теллер [3] в том же году рассмотрели некоторые механизмы участия экситонов в фотохимических процессах. У. Фано в 1940 г. отметил возможность разрушения экситонов около поверхности с рождением свободных носителей [4].
Первое надежное экспериментальное подтверждение участия экситонов в фотоэлектрических процессах было получено Л.Апкером и Е. Тафтом в 1950 г [5]. Они исследовали фотоэмиссию с напыленных слоев щелочно-галоидных солей. Было установлено, что фотоэмиссия в этих соединениях появляется лишь после создания в них так называемых F-центров. При этом фотоэффект возникает в спектральной области, соответствующей прямой ионизации F-центров, но максимального значения фотоэмиссия достигает в экситонной линии поглощения (рис. 1). Авторы работы [5] предполагали, что в этом случае возникают экситоны, которые мигрируют к F-центрам и ионизируют их. Этот механизм создания свободных носителей экситонами в дальнейшем неоднократно использовался при обсуждении участия экситонов в фотоэлектрических процессах.
При низких температурах на экситонном максимуме фотоэмиссии возникал «провал», который трактовался исследователями как эффект «самообращения», вызванный ростом коэффициента поглощения в экситонной линии и проявлением «мертвого» приповерхностного слоя, в котором не происходит возбуждения F-центров экситонами (рис. 1). Теория этого явления была развита М. Хеббом в 1951 г. [6] и, по существу, явилась первым опытом введения в теорию и эксперимент «мертвого» безэкситонного слоя. Позднее в 1957 г., аналогичные опыты, но уже при исследовании фотопроводимости в щелочно-галоидных кристаллах с F-центрами выполнил Н. Иншоуспе [7]. Он подтвердил, что и в этом процессе электроны возникают при ионизации F-центров экситонами. Детально эти процессы в щелочно-галоидных кристаллах изучались Ч. Б.Лущиком с сотрудниками (см. [8]).
|
|
Теоретически вопрос о создании свободных носителей тока рассматривался в работах Й. Тойазава, М. Трлифая и других исследователей. Так, Тойазава в 1954 г. [9] теоретически изучил вопрос о создании свободных носителей тока при взаимодействии экситона с центром, захватившим электрон. В частности, он показал, что процесс ионизации F-центра более вероятен, чем процесс излучения экситонов, если концентрация F-центров не меньше 0,5 · 1016 см-3. М. Трлифай рассмотрел (1965 г.) теорию процессов аннигиляции экситонов в ионных кристаллах при взаимодействии их с нейтральными или ионизированными донорами, ведущих к генерации свободных носителей (табл. 1) [10]. Возможны также и процессы, когда захват экситона на нейтральный или заряженный центр не приводит к возникновению свободных носителей тока (связывание экситона). Позже было показано, что в случае захвата экситона заряженным центром возможен процесс с выбросом электрона в зону проводимости, т. е. оже-процесс.
Таблица 1.
Примечание. Здесь – ионизованный донор; — дырка; — свободный экситон;
— электрон.
В 1956 г. Е. Ф. Гроссом с сотрудниками впервые была обнаружена тонкая структура спектральных кривых фотопроводимости, коррелирующая с экситонным спектром поглощения в полупроводниковых кристаллах CdS и HgJ2 . Явление получило название «тонкой структуры спектра, фотопроводимости» [11, 12]. Оно было интерпретировано как создание свободных носителей тока экситонами благодаря взаимодействию с примесными центрами и дефектами. В дальнейшем подобная структура была выявлена во многих полупроводниковых кристаллах [13, 14]. В 50-е годы было обнаружено проявление экситонных состояний и в спектрах фототока органических кристаллов [15, 16]. В настоящее время тонкая структура в спектрах фотопроводимости и фотоЭДС известна также для гетероструктур и нанокристаллов (см. рис. 2) [17].
§1. Фотоэлектрические процессы с участием экситонов в полупроводниковых кристаллах
Фотоэлектрические процессы с участием экситонов в полупроводниковых кристаллах подробно изучены для кристаллов CdS, CdSe, Ge, GaAs, Cu2 О. Для сернистого кадмия впервые показано существование спектров двух типов (или групп) (рис. 3) [18]. В спектрах первого типа экситонным линиям поглощения соответствуют максимумы фототока, а в спектрах второго типа этим же линиям соответствуют минимумы кривых фотопроводимости. Такой вид корреляции оказался характерным для всех кристаллов с прямыми разрешенными экситонными переходами (CdS, CdSe, CdTe, ZnSe, HgJ2 ). Механизм возникновения этого явления связан со свойствами поверхности и подробнее будет рассмотрен ниже.
Дж. Хапфилдом в 1961 г. было высказано соображение о важности сравнения величины фототока при одном и том же коэффициенте поглощения (α), но при разных величинах энергии в области экситонных линий и сплошного фона. Это позволило бы выделить истинный экситонный вклад в фотопроводимость. Такое сравнение было сделано Б. В. Новиковым и др. для кристаллов CdS [19]. Оказалось, что фототок в области экситонных максимумов поглощения в несколько раз выше, чем в глубине собственного поглощения при равных значениях коэффициента α. Поскольку квантовый выход фототока в этой спектральной области для CdS постоянен [20], то наблюдаемое различие, по-видимому, связано с временами жизни свободных носителей. Можно предположить, что «горячие» носители, создаваемые в глубине собственного поглощения, имеют меньшее время жизни, чем носители, созданные экситонами. Авторы этой работы использовали факт разрушения экситонов в тонком слое около поверхности (ионизация поверхностным электрическим полем) для определения диффузионной длины экситонов. Она составила в CdS от 200 до 1000 нм, а в CdSe от 200 до 400 нм.
А. Коре и С. Никитин сравнили структуру фототока и коэффициент поглощения для «желтой» серии экситона в кристалле Сu2 О (рис. 4) [13].
Оказалось, что s -состояния экситона слабо проявляются в спектре фототока. В тоже время d - и р - состояния имеют много большую интенсивность в спектре фотопроводимости. Фотопроводимость в этом кристалле возникает при разрушении экситонов в локальных электрических полях. Если экситон движется в неоднородном электрическом поле, то оно будет поляризовать экситон и втягивать его в область более высоких электрических полей. Поскольку поляризуемость d - и р -состояний выше, чем поляризуемость s -состояний, то и вероятность разрушения их электрическим полем оказывается выше.
Авторы публикаций [21, 22] исследовали поведение фототока в непрямых экситонных переходах кристаллов германия и кремния. Ими было установлено, что в согласии с теоретическими работами М. Трлифая вероятность взаимодействия экситона с примесным центром зависит от его кинетической энергии и максимальна при k → ∞. Эти же авторы показали, что для наиболее чистых кристаллов германия (N+ – N– ~ 1012 cм–3 ) в слабых электрических полях экситоны не создают свободных носителей тока, если их кинетическая энергия меньше энергии связи экситона. Этим подтверждается основополагающая гипотеза Я. И. Френкеля об экситонах как нейтральных квазичастицах.
Многими исследователями было доказано участие связанных экситонов в создании свободных носителей тока. Так, в кристаллах CdS был обнаружен максимум фототока на линии I 2 , принадлежащий экситону, локализованному на нейтральном доноре [11]. Предполагалось, что фототок в этом комплексе возникает в результате оже-процесса. В некоторых кристаллах CdS наблюдалась серия эквидистантных максимумов на кривых фотопроводимости, связанная с ионизацией экситонов на комплексе I 2 с испусканием оптического фонона [11].
В спектрах фотоответа р-п перехода для структуры на основе фосфида галлия, легированного азотом, авторами публикаций [23] были обнаружены максимумы фототока на линиях поглощения экситонов, связанных на единичных и на парных атомах азота. Анализируя свои данные, исследователи пришли к необычному выводу о миграции энергии связанных экситонов к р-п переходу с последующей их диссоциацией в области объемного заряда. Передача этого возбуждения происходит на расстояния, превышающие 10 мкм, что значительно больше, чем диффузионная длина для электронов и дырок в этом соединении.
В кристаллах германия, легированных мышьяком и фосфором, авторами работы [24] также наблюдались четкие максимумы на кривой фотопроводимости, принадлежащие связанным экситонам. Кроме того, наблюдались более слабые максимумы, приписанные исследователями возбужденным состояниям дырки, входящей в экситон-примесный комплекс.
Отметим также, что экситоны дают вклад и в создание фотоэдс. Впервые (в 1968 г.) это явление наблюдал В. Е. Лашкарев с сотрудниками для кристаллов CdS [20]. В. Н. Поляковым и др. исследованы (1985 г.) спектры барьерного фотоотклика гетероперехода п -CdS-n -CdSe в области экситонного поглощения CdSe и влияния на них напряжения смещения и дополнительной подсветки [25]. Ими определена диффузионная длина экситонов для CdSe. Она оказалась равной 25 ÷ 125 нм. Среди других работ на эту тему отметим недавно появившуюся работу Н. Нака и др. [26] по двухфотонному фотовольтаическому эффекту на экситонах в Сu2 О.
§2. Влияние поверхности на фотоэлектрические процессы с участием экситонов.
Вклад экситонов в фотоэлектрические процессы определяется как поведением экситонов (аннигиляция, ионизация), так и свойствами созданных ими носителей тока (время жизни, подвижность, квантовый выход). Большая величина коэффициента поглощения в максимумах экситонных линий соединений типа А2 В6 (~ 105 см–1 ) приводит к тому, что состояние поверхности и приповерхностной области (наличие примесей и дефектов на поверхности, высокие электрические поля) должно оказывать существенное влияние на процессы с участием экситонов. Выяснилось, что механическая обработка поверхности кристалла CdS приводит, например, к переходу кривых фотопроводимости 1-го типа ко 2-му [27]. Эффективным методом изменения состояния поверхности явилась ее бомбардировка электронами низких энергий [28]. Глубина проникновения электронов сравнима с величиной обратного коэффициента поглощения света (~ 102 нм). Электронная бомбардировка приводит к десорбции газов с поверхности и перезарядке поверхностных и приповерхностных центров. При больших дозах облучения начинают проявляться и «допороговые» радиационные дефекты [29].
Электронная бомбардировка по-разному действует на тонкую структуру спектра фотопроводимости в кристаллах разных типов, но основным результатом является исчезновение самой тонкой структуры в кристаллах 1-го и 2-го типов и образование гладких бесструктурных кривых после небольших доз облучения (~ 1014 — 1015 эл/см2 ). После больших доз облучения структура может возникать вновь (рис. 5, кривая 3).
Сильное воздействие на структуру спектров фотопроводимости кристаллов CdS оказывает также интенсивное ультрафиолетовое облучение кристаллов в вакууме [28]. После УФ-облучения кристаллы 2-й группы становятся бесструктурными, а в некоторых случаях при длительном облучении на гладких кривых возникает структура, но уже 1-го типа. Аналогичное явление наблюдалось и после длительной бомбардировки электронами. Существенная трансформация спектральных кривых фотопроводимости выявлена А. С. Батыревым и др. после облучения кристаллов CdS в воде и на воздухе He-Cd-лазером.
Установлено, что результат воздействия электронной бомбардировки (см. рис. 5) и малых доз УФ-облучения обратим. После нагревания до комнатной температуры кривые фотопроводимости возвращаются к исходному виду: на гладких кривых восстанавливается первоначальная структура, причем скорость ее восстановления зависит от давления, состава газов в вакуумной камере и температуры. Поскольку экситонные спектры отражения после бомбардировки и УФ-облучения сохраняются, мы считаем, что можно предположить следующее: кардинальное изменение спектра фотопроводимости — исчезновение тонкой структуры — связано со свойствами носителей заряда в приповерхностной области. Рядом исследователей было высказано соображение, что в кристаллах 1-го типа имеет место обогащающий изгиб зон, связанный с избытком кадмия в приповерхностной области. В кристаллах 2-го типа существует сильный обедняющий изгиб зон, вызванный адсорбцией кислорода [30].
Наличие адсорбированного на поверхности CdS кислорода и влияние его на фотопроводимость было доказано многочисленными исследованиями: например, К.Райтом и К. Боэром при воздействии электронной бомбардировки [31], П. Марком при УФ-облучении [19]. Р.Шуберт и К.Боэр [32] показали, использовав масс-спектрометрический метод, что на поверхности кристаллов CdS, относящихся к разным типам, кислород адсорбирован в различных формах. К. Боэр и другие исследовали этим же методом роль нестехиометрии поверхностного слоя в формировании спектров фотопроводимости и люминесценции CdS [33, 34].
§ 3. Исследование экситонной структуры в спектрах фотопроводимости кристаллов CdS путем изменения внешнего поля.
При низких температурах в спектрах ФП полупроводников в области края собственного поглощения можно наблюдать тонкую структуру (ТС) в виде максимумов (тип 1) или минимумов (тип 2), обусловленную экситонами. Наличие ТС обусловлено различием времени жизни неравновесных основных носителей в приповерхностном слое (τ s ) и объеме полупроводника (τ v ) [35]. При этом тип ТС определяется соотношением этих времен: в случае ТС типа 1 τ s > τ v , в случае ТС типа 2 τ s < τ v , а при выполнении равенства τ s = τ v спектры ФП должны иметь бесструктурный (гладкий) вид. Воздействуя на полупроводник различными способами, можно изменять соотношение между τ s и τ v а, следовательно, и тип ТС, используя последнюю как индикатор изменения фоточувствительности приповерхностной области и / или объема полупроводника.
В настоящей работе исследованы низкотемпературные (T = 4 ÷77 K) спектры ФП кристаллов CdS в зависимости от электрического поля, приложенного к полупроводнику по методу ”эффекта поля”, предварительного фотовозбуждения собственным светом, подсветки ИК — светом и тянущего поля. Обнаружены характерные изменения ТС спектров и фоточувствительности в собственной и примесной областях спектра.
Приложение к полупроводнику электрического поля, создающего слой обеднения вблизи поверхности, приводит, по мере его увеличения, к обратимой трансформации ТС от типа 1 к типу 2 (рис. 6, кривые 1—3). На промежуточной стадии такой трансформации спектральная кривая ФП приобретает гладкий вид (кривая 2). При значениях потенциала на полевом электроде, соответствующих слою обогащения у поверхности, тип ТС сохраняется (кривая 4).
К обратимой трансформации ТС от типа 1 к типу 2 приводит также предварительная засветка кристалла собственным светом[1] .
В ряде кристаллов наблюдается обратимая трансформация ТС от типа 2 к типу 1 при интенсивной инфракрасной (ИК) подсветке. Имелись образцы, в которых переход от типа 2 к типу 1 ТС происходил при увеличении тянущего поля (рис. 7). Отметим немаловажную для дальнейшего деталь, а именно: инверсия типа ТС с увеличением тянущего поля наблюдалась в образцах с линейными размерами ~ 1 mm.