Реферат: Примесная краевая фотопроводимость полупроводников

Краткая история вопроса. Весьма примечательна пробле­ма участия экситонов в фотопроводимости. Являясь нейтральным (хотя и подвижным) образованием, экситон не может непосред­ственно принимать участие в переносе электрического заряда [1]. Я. И. Френкель писал, что «у многих диэлектриков и полупровод­ников поглощение света не всегда сопровождается появлением элек­тропроводности» [1].

Однако еще в 1938 г. Н. Мотт указал [2] на возможность возник­новения свободных носителей тока в результате теплового распада экситонов. Дж. Франк и Е. Теллер [3] в том же году рассмотрели некоторые механизмы участия экситонов в фотохимических про­цессах. У. Фано в 1940 г. отметил возможность разрушения эксито­нов около поверхности с рождением свободных носителей [4].

Первое надежное экспериментальное подтверждение участия экситонов в фотоэлектрических процессах было получено Л.Апкером и Е. Тафтом в 1950 г [5]. Они исследовали фотоэмиссию с напыленных слоев щелочно-галоидных солей. Было установлено, что фотоэмиссия в этих соединениях появляется лишь после созда­ния в них так называемых F-центров. При этом фотоэффект воз­никает в спектральной области, соответствующей прямой иониза­ции F-центров, но максимального значения фотоэмиссия достига­ет в экситонной линии поглощения (рис. 1). Авторы работы [5] предполагали, что в этом случае возникают экситоны, которые ми­грируют к F-центрам и ионизируют их. Этот механизм создания свободных носителей экситонами в дальнейшем неоднократно ис­пользовался при обсуждении участия экситонов в фотоэлектрических процессах.

При низких температурах на экситонном максимуме фотоэмис­сии возникал «провал», который трактовался исследователями как эффект «самообращения», вызванный ростом коэффициента погло­щения в экситонной линии и проявлением «мертвого» приповерх­ностного слоя, в котором не происходит возбуждения F-центров эк­ситонами (рис. 1). Теория этого явления была развита М. Хеббом в 1951 г. [6] и, по существу, явилась первым опытом введения в теорию и эксперимент «мертвого» безэкситонного слоя. Позднее в 1957 г., аналогичные опыты, но уже при исследовании фото­проводимости в щелочно-галоидных кристаллах с F-центрами вы­полнил Н. Иншоуспе [7]. Он подтвердил, что и в этом процессе электроны возникают при ионизации F-центров экситонами. Де­тально эти процессы в щелочно-галоидных кристаллах изучались Ч. Б.Лущиком с сотрудниками (см. [8]).

log Y
log Y

Теоретически вопрос о создании свободных носителей тока рассматривался в работах Й. Тойазава, М. Трлифая и других исследо­вателей. Так, Тойазава в 1954 г. [9] теоретически изучил вопрос о создании свободных носителей тока при взаимодействии экситона с центром, захватившим электрон. В частности, он показал, что про­цесс ионизации F-центра более вероятен, чем процесс излучения экситонов, если концентрация F-центров не меньше 0,5 · 1016 см-3. М. Трлифай рассмотрел (1965 г.) теорию процессов аннигиля­ции экситонов в ионных кристаллах при взаимодействии их с нейтральными или ионизированными донорами, ведущих к генерации свободных носителей (табл. 1) [10]. Возможны также и процессы, когда захват экситона на нейтральный или заряженный центр не приводит к возникновению свободных носителей тока (связывание экситона). Позже было показано, что в случае захвата экситона заряженным центром возможен процесс с выбросом электрона в зону проводимости, т. е. оже-процесс.

Таблица 1.

Примечание. Здесь – ионизованный донор; — дырка; — свобод­ный экситон;

— электрон.

В 1956 г. Е. Ф. Гроссом с сотрудниками впервые была обнару­жена тонкая структура спектральных кривых фотопроводимости, коррелирующая с экситонным спектром поглощения в полупроводниковых кристаллах CdS и HgJ2 . Явление получило название «тон­кой структуры спектра, фотопроводимости» [11, 12]. Оно было ин­терпретировано как создание свободных носителей тока экситонами благодаря взаимодействию с примесными центрами и дефектами. В дальнейшем подобная структура была выявлена во многих полупроводниковых кристаллах [13, 14]. В 50-е годы было обнаружено проявление экситонных состояний и в спектрах фототока органи­ческих кристаллов [15, 16]. В настоящее время тонкая структура в спектрах фотопроводимости и фотоЭДС известна также для гетероструктур и нанокристаллов (см. рис. 2) [17].

§1. Фотоэлектрические процессы с участием экситонов в полупроводниковых кристаллах

Фотоэлектрические процессы с участием экситонов в полупроводниковых кристаллах подробно изучены для кри­сталлов CdS, CdSe, Ge, GaAs, Cu2 О. Для сернистого кадмия впервые показано существование спектров двух типов (или групп) (рис. 3) [18]. В спектрах первого типа экситонным линиям поглощения соответствуют максимумы фототока, а в спектрах вто­рого типа этим же линиям соответствуют минимумы кривых фотопроводимости. Такой вид корреляции оказался характерным для всех кристаллов с прямыми разрешенными экситонными перехода­ми (CdS, CdSe, CdTe, ZnSe, HgJ2 ). Механизм возникновения этого явления связан со свойствами поверхности и подробнее будет рас­смотрен ниже.

Дж. Хапфилдом в 1961 г. было высказано соображение о важно­сти сравнения величины фототока при одном и том же коэффици­енте поглощения (α), но при разных величинах энергии в области экситонных линий и сплошного фона. Это позволило бы выделить истинный экситонный вклад в фотопроводимость. Такое сравнение было сделано Б. В. Новиковым и др. для кристаллов CdS [19]. Ока­залось, что фототок в области экситонных максимумов поглощения в несколько раз выше, чем в глубине собственного поглощения при равных значениях коэффициента α. Поскольку квантовый выход фототока в этой спектральной области для CdS постоянен [20], то наблюдаемое различие, по-видимому, связано с временами жизни свободных носителей. Можно предположить, что «горячие» носите­ли, создаваемые в глубине собственного поглощения, имеют мень­шее время жизни, чем носители, созданные экситонами. Авторы этой работы использовали факт разрушения экситонов в тонком слое около поверхности (ионизация поверхностным электрическим полем) для определения диффузионной длины экситонов. Она со­ставила в CdS от 200 до 1000 нм, а в CdSe от 200 до 400 нм.

А. Коре и С. Никитин сравнили структуру фототока и коэффи­циент поглощения для «желтой» серии экситона в кристалле Сu2 О (рис. 4) [13].

Оказалось, что s -состояния экситона слабо проявляются в спек­тре фототока. В тоже время d - и р - состояния имеют много большую интенсивность в спектре фотопроводимости. Фотопроводимость в этом кристалле возникает при разрушении экситонов в локальных электрических полях. Если экситон движется в неоднородном электрическом поле, то оно будет поляризовать экситон и втягивать его в область более высоких электрических полей. Поскольку поляризуемость d - и р -состояний вы­ше, чем поляризуемость s -состояний, то и вероятность разрушения их электрическим полем оказывается выше.

Авторы публикаций [21, 22] исследовали поведение фототока в непрямых экситонных переходах кристаллов германия и кремния. Ими было установлено, что в согласии с теоретическими работа­ми М. Трлифая вероятность взаимодействия экситона с примесным центром зависит от его кинетической энергии и максимальна при k → ∞. Эти же авторы показали, что для наиболее чистых кри­сталлов германия (N+ – N ~ 1012–3 ) в слабых электрических полях экситоны не создают свободных носителей тока, если их ки­нетическая энергия меньше энергии связи экситона. Этим подтверждается основополагающая гипотеза Я. И. Френкеля об экситонах как нейтральных квазичастицах.

Многими исследователями было доказано участие связанных экситонов в создании свободных носителей тока. Так, в кристал­лах CdS был обнаружен максимум фототока на линии I 2 , принад­лежащий экситону, локализованному на нейтральном доноре [11]. Предполагалось, что фототок в этом комплексе возникает в ре­зультате оже-процесса. В некоторых кристаллах CdS наблюдалась серия эквидистантных максимумов на кривых фотопроводимости, связанная с ионизацией экситонов на комплексе I 2 с испусканием оптического фонона [11].

В спектрах фотоответа р-п перехода для структуры на основе фосфида галлия, легированного азотом, авторами публикаций [23] были обнаружены максимумы фототока на линиях поглощения эк­ситонов, связанных на единичных и на парных атомах азота. Ана­лизируя свои данные, исследователи пришли к необычному выводу о миграции энергии связанных экситонов к р-п переходу с последу­ющей их диссоциацией в области объемного заряда. Передача этого возбуждения происходит на расстояния, превышающие 10 мкм, что значительно больше, чем диффузионная длина для электронов и дырок в этом соединении.

В кристаллах германия, легированных мышьяком и фосфором, авторами работы [24] также наблюдались четкие максимумы на кривой фотопроводимости, принадлежащие связанным экситонам. Кроме того, наблюдались более слабые максимумы, приписанные исследователями возбужденным состояниям дырки, входящей в экситон-примесный комплекс.

Отметим также, что экситоны дают вклад и в создание фотоэдс. Впервые (в 1968 г.) это явление наблюдал В. Е. Лашкарев с сотруд­никами для кристаллов CdS [20]. В. Н. Поляковым и др. исследо­ваны (1985 г.) спектры барьерного фотоотклика гетероперехода п -CdS-n -CdSe в области экситонного поглощения CdSe и влияния на них напряжения смещения и дополнительной подсветки [25]. Ими определена диффузионная длина экситонов для CdSe. Она оказа­лась равной 25 ÷ 125 нм. Среди других работ на эту тему отметим недавно появившуюся работу Н. Нака и др. [26] по двухфотонному фотовольтаическому эффекту на экситонах в Сu2 О.

§2. Влияние поверхности на фотоэлектрические процессы с участием экситонов.

Вклад экситонов в фотоэлектрические про­цессы определяется как поведением экситонов (аннигиляция, иони­зация), так и свойствами созданных ими носителей тока (время жизни, подвижность, квантовый выход). Большая величина коэф­фициента поглощения в максимумах экситонных линий соединений типа А2 В6 (~ 105 см–1 ) приводит к тому, что состояние поверхно­сти и приповерхностной области (наличие примесей и дефектов на поверхности, высокие электрические поля) должно оказывать суще­ственное влияние на процессы с участием экситонов. Выяснилось, что механическая обработка поверхности кристалла CdS приводит, например, к переходу кривых фотопроводимости 1-го типа ко 2-му [27]. Эффективным методом изменения состояния поверхности явилась ее бомбардировка электронами низких энергий [28]. Глубина проникновения электронов сравнима с величиной об­ратного коэффициента поглощения света (~ 102 нм). Электронная бомбардировка приводит к десорбции газов с поверхности и переза­рядке поверхностных и приповерхностных центров. При больших дозах облучения начинают проявляться и «допороговые» радиаци­онные дефекты [29].

Электронная бомбардировка по-разному действует на тонкую структуру спектра фотопроводимости в кристаллах разных ти­пов, но основным результатом является исчезновение самой тон­кой структуры в кристаллах 1-го и 2-го типов и образование глад­ких бесструктурных кривых после небольших доз облучения (~ 1014 — 1015 эл/см2 ). После больших доз облучения структура мо­жет возникать вновь (рис. 5, кривая 3).

Сильное воздействие на структуру спектров фотопроводимости кристаллов CdS оказывает также интенсивное ультрафиолетовое облучение кристаллов в вакууме [28]. После УФ-облучения кри­сталлы 2-й группы становятся бесструктурными, а в некоторых случаях при длительном облучении на гладких кривых возника­ет структура, но уже 1-го типа. Аналогичное явление наблюда­лось и после длительной бомбардировки электронами. Существен­ная трансформация спектральных кривых фотопроводимости вы­явлена А. С. Батыревым и др. после облучения кристаллов CdS в воде и на воздухе He-Cd-лазером.

Установлено, что результат воздействия электронной бомбарди­ровки (см. рис. 5) и малых доз УФ-облучения обратим. После нагревания до комнатной температуры кривые фотопроводимости возвращаются к исходному виду: на гладких кривых восстанавли­вается первоначальная структура, причем скорость ее восстановле­ния зависит от давления, состава газов в вакуумной камере и тем­пературы. Поскольку экситонные спектры отражения после бомбардировки и УФ-облучения сохраняются, мы считаем, что можно предположить следующее: кардинальное изменение спектра фото­проводимости — исчезновение тонкой структуры — связано со свой­ствами носителей заряда в приповерхностной области. Рядом исследователей было высказано соображение, что в кристаллах 1-го типа имеет место обогащающий изгиб зон, связанный с избытком кадмия в приповерхностной области. В кристаллах 2-го типа су­ществует сильный обедняющий изгиб зон, вызванный адсорбцией кислорода [30].

Наличие адсорбированного на поверхности CdS кислорода и влияние его на фотопроводимость было доказано многочисленны­ми исследованиями: например, К.Райтом и К. Боэром при воз­действии электронной бомбардировки [31], П. Марком при УФ-облучении [19]. Р.Шуберт и К.Боэр [32] показали, использовав масс-спектрометрический метод, что на поверхности кристаллов CdS, относящихся к разным типам, кислород адсорбирован в раз­личных формах. К. Боэр и другие исследовали этим же методом роль нестехиометрии поверхностного слоя в формировании спек­тров фотопроводимости и люминесценции CdS [33, 34].

§ 3. Исследование экситонной структуры в спектрах фотопроводимости кристаллов CdS путем изменения внешнего поля.

При низких температурах в спектрах ФП полупровод­ников в области края собственного поглощения можно наблюдать тонкую структуру (ТС) в виде максимумов (тип 1) или минимумов (тип 2), обусловленную экситонами. Наличие ТС обусловлено различием времени жизни неравновесных основных носителей в приповерх­ностном слое (τ s ) и объеме полупроводника (τ v ) [35]. При этом тип ТС определяется соотношением этих времен: в случае ТС типа 1 τ s > τ v , в случае ТС типа 2 τ s < τ v , а при выполнении равенства τ s = τ v спектры ФП должны иметь бесструктурный (гладкий) вид. Воздействуя на полупроводник различными способами, можно изменять соотношение между τ s и τ v а, следовательно, и тип ТС, используя последнюю как индикатор изменения фоточувствительности приповерхностной области и / или объема полупроводника.

В настоящей работе исследованы низкотемпературные (T = 4 ÷77 K) спектры ФП кристаллов CdS в зависимо­сти от электрического поля, приложенного к полупро­воднику по методу ”эффекта поля”, предварительного фотовозбуждения собственным светом, подсветки ИК — светом и тянущего поля. Обнаружены характерные изме­нения ТС спектров и фоточувствительности в собствен­ной и примесной областях спектра.

Приложение к полупроводнику электрического поля, создающего слой обеднения вблизи поверхности, при­водит, по мере его увеличения, к обратимой трансфор­мации ТС от типа 1 к типу 2 (рис. 6, кривые 1—3). На промежуточной стадии такой трансформации спек­тральная кривая ФП приобретает гладкий вид (кривая 2). При значениях потенциала на полевом электроде, соот­ветствующих слою обогащения у поверхности, тип ТС сохраняется (кривая 4).

К обратимой трансформации ТС от типа 1 к типу 2 приводит также предварительная засветка кристалла соб­ственным светом[1] .

В ряде кристаллов наблюдается обратимая трансфор­мация ТС от типа 2 к типу 1 при интенсивной инфра­красной (ИК) подсветке. Имелись образцы, в которых переход от типа 2 к типу 1 ТС происходил при увели­чении тянущего поля (рис. 7). Отметим немаловажную для дальнейшего деталь, а именно: инверсия типа ТС с увеличением тянущего поля наблюдалась в образцах с линейными размерами ~ 1 mm.

К-во Просмотров: 195
Бесплатно скачать Реферат: Примесная краевая фотопроводимость полупроводников