Реферат: Принцип действия ваккумных ламп с управлением током

1. ВАКУУМНЫЕ МНОГОЭЛЕКТРОДНЫЕ ЛАМПЫ

Вакуумные лампы с управлением током являются наиболее важными элементами электронных схем. В за­висимости от рабочего диапазона частот лампы можно разделить на две группы. К первой группе относятся все вакуумные многоэлектродные лампы, применяемые на частотах до 500 Мгц, ко второй — сверхвысокочастотные лампы, которые используются на частотах от 500 до 100 000 Мгц.

1.1. Вакуумный диод

Как было показано ранее, вольт-амперная характе­ристика вакуумного диода состоит из трех участков, со­ответствующих режиму начального тока, режиму про­странственного заряда и режиму насыщения (см. 3).

В режиме начального тока (Uа <0) справедливо уравнение (Iа =Is e- eUa / kT =Is e- Ua / Ut ). Согласно этому уравнению при Uа =0 анодный ток Iа становится равным току насыщения Is . Однако это справедливо лишь для диодов, у которых ток эмиссии катода настолько мал, что при положительном анодном напряжении не возникает пространственного заряда. Для используемых в технике диодов, в которых пространственный заряд довольно велик, анодный ток Iпри Ua =Qне равен току насыщения, т. е. всегда Iа o <<Is . Поэтому закон начального тока для таких диодов имеет вид:

, (1)

где Iао — анодный ток при действующем обратном на­пряжении Uдейств = 0 (ограниченный облаком простран­ственного заряда перед катодом).

В режиме пространственного заряда (Ua >0) связь между анодным током и анодным напряжением для диода с плоскими электродами описывается уравнением «трех вторых».

В режиме насыщения (Ua >>0) анодный ток равен току эмиссии катода, который лишь незначительно воз­растает при увеличении анодного напряжения за счет эффекта Шоттки. В промышленных типах диодов вслед­ствие высокой эмиссионной способности (оксидного) ка­тода насыщение анодного тока достигается только в импульсном режиме.

Вакуумные диоды используются в основном для вы­прямления, преобразования, умножения частоты и для детектирования. Важнейшим параметром диода (при управлении переменным током) является крутизна S=-dIa /dUa .В режиме пространственного заряда

(2)

1.2. Вакуумный триод

Уравнение статической характеристики. В вакуум­ном триоде между катодом и анодом расположена управ­ляющая сетка (спиральная, стержневая или ячеистая) и на создаваемый катодом электронный ток влияют одновременно электрические поля анода и управляющей сет­ки.

Рис. 1 Система электродов триода (а) и «треуголь­ная» эквивалентная схема (б).

Для количественного учета этого влияния удобно заменить триод (рис. 1,а) эквивалентной схемой, ко­торая состоит из соединенных треугольником трех лам­повых емкостей Са.к. , Са.с. и Сс.к. (рис. 1,6). Тогда за­ряд катода (в пренебрежении пространственным элек­тронным зарядом) определяется следующим электро­статическим соотношением:

(2)

или

(2 а)

В плоскости сетки действуеттак называемое эффек­тивное или действующее напряжение Uдейств. Отношение называют проницаемостью триода.

(3)

С учетом уравнения (96) имеем:

Uдейств =Uс +DUа (4)

Следовательно, действующее напряжение Uдейств равно сумме сеточного напряжения и некоторой части (D =-1¸20%) анодного напряжения. В соответствии с уравнением триодная система с напряжениями Uс и Uа сводится к эквивалентной диодной системе с напряжением Uдейств.

Согласно закону «трех вторых» для анодного тока Iа триода справедливо соотношение

Iа =KU3/2 действ = К (Uc + DUa )3/2 .(5)

Это уравнение описывает так называемую «статиче­скую характеристику» триода, которая хорошо совпа­дает с экспериментальными данными. Константа урав­нения трех вторых определяется геометрией электро­дов. Для плоской триодной системы имеет место следую­щее приближенное соотношение:

(6)

где dc — расстояние между сеткой и катодом, см; S - площадь поверхности катода, см2 .

Согласно уравнению (5) триод характеризуется дву­мя семействами характеристик: Iа =f(Uc )с параметром Ua (рис. 4.2,а) и Ia = f(Uа ) с параметром Uc (рис. 2,в). Уравнение динамической характеристики. Для исклю­чения сеточных токов триоды (кроме генераторных три­одов) обычно работают при отрицательном напряжении на сетке. При этом «рабочая точка» лампы за счет отри­цательного напряжения (смещения) на сетке смещается в область отрицательных сеточных напряжений настоль­ко, чтобы при максимальном ожидаемом управляющем напряжении на сетке последняя находилась под отрица­тельным потенциалом. При подаче управляющего напряжения на сетку изменяется не только анодный ток, но и анодное напряжение (благодаря наличию внешней цепи), которое в свою очередь влияет на анодный ток. Поэтому общее изменение анодного тока (при небольших амплитудах управляющего напряжения) равно полному дифферен­циалу dl а , причем

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 228
Бесплатно скачать Реферат: Принцип действия ваккумных ламп с управлением током