Реферат: Принципы дидактики в обучении математике Цели и содержание обучения математике в средней общеобразовательной

Чешский педагог Ян Анос Коменский (1592-1670 г.) расширил содержание школьного обучения новыми реальными предметами, разработал принципы наглядности, систематичности, прочности обучения, внес много нового в организацию учебной работы: учебный год, урок, текущий и годовой учет знаний, продолжительность учебного дня, твердое расписание уроков и т.д. в главном своем труде «Великая дидактика» Я. Коменский уделил внимание вопросам начального обучения арифметике.

Дидактика математики выделилась из педагогики в трудах швейцарского педагога Иоганна Генриха Песталоццы (1746-1827 г.), который в 1803 г. напечатал «Элементарные книги» – «Наглядное учение о числе» и «Азбука наглядности, или Наглядное обучение об измерении».

Зарождение дидактики математики в России связывается с появлением первого русского учебника арифметики Л.Ф. Магницкого (1703 г.), в котором впервые числа записывались арабскими цифрами, а не Славянскими буквами. Прототипами учебников по систематическим курсам арифметики и алгебры являются «Руководство к арифметике» Леонарда Эйлера (1707-1783) и «Универсальная арифметика». Н.Г. Курганов (ученик Магницкого) использовал конкретно-индуктивный метод в своих учебниках алгебры (1557 г.) и арифметики (1771 г.) и перевел на русский язык знаменитые «Начала» Евклида.

На рубеже XVIII-XIX в.в. академик С.Е. Гурьев выдвинул прогрессивную идею пропедевтических курсов математических дисциплин в школе и более строго, научного изложения. Создатели русской дидактики арифметики для Народной школы: Буссе Ф.И. «Руководство преподавания арифметики» (1830 г.) и Гурьев П.С. «Руководство к преподаванию арифметики малолетним детям» (1839 г.). Крупнейшие представители: Гольденберг А.И., Шохор-Троцкий С.И. (обучение через системы задач), Арженников К.П. и др.

Некоторые основы дидактики геометрии заложены Лобачевским Н.И., академиком Гурьевым С.Е., Осиповским Т.Ф., а первый большой труд посвященный преподаванию систематического курса, – «Материалы по методике геометрии» (1883 г.) принадлежат А.Н. Остроградскому.

Во второй половине XIX в. создаются основы дидактики алгебры, тригонометрия и начал анализа (Стралолюбский А.Н. Ермаков В.П.), Шереметевский В.П.

Система традиционной МПМ в СШ включала общую МПМ и пять частных методик: начального курса арифметики, систематических курсов арифметики, алгебры, геометрии и тригонометрии. В последних содержались конкретные методические рекомендации по изучению теоретических вопросов курса и решения задач и их называли «рецептурными». Общую МПМ называли теоретической и она рассматривала общие вопросы относящиеся к изучению любого математического предмета, как цели обучения математики, математические понятия и предложения, теоремы и их доказательства, задачи и их решения, методы и формы обучения и т.д.


2. Принципы дидактики в обучении математике

Методика не только использует достижения дидактики для усовершенствования учебного процесса, но и сама оказывает влияние на развитие дидактики

МПМ, решая свои задачи, учитывает основные общедидактические закономерности обучения:

обусловленность учебно-воспитательного процесса потребностями общества;

взаимосвязь обучения, образования, воспитания и развития в целостном педагогическом процессе;

зависимость результатов учебно-воспитательной деятельности от реальных возможностей учеников;

зависимость обучения и воспитания от условий, в которых они протекают;

взаимосвязь воспитания и обучения;

взаимозависимость целей, содержания, методов, средств и форм;

зависимость результатов учебно-воспитательной деятельности от оптимального влияния всех элементов учебно-воспитательного процесса.

МПМ, как и каждая методика, опирается на дидактические принципы. Она представляет собой наиболее общее нормативное знание того, как надо строить, осуществлять и усовершенствовать обучение, развитие и воспитание учеников. Рассмотрим систему принципов, разработанных дидактикой, и наметим основные требования к процессу обучения математике, которое вытекает из каждого принципа. Принципы направленности обучения на комплексное решение задач образования, воспитания и общего развития учащихся:

добиваться того, чтобы каждый ученик овладел знаниями, умениями и навыками, зафиксированными в программе по математике;

осуществлять мировоззренческую направленность школьного курса математики;

проводить работу по моральному, трудовому, эстетическому воспитанию учащихся средствами математики, осуществлять профориентацию;

развивать мышление, устную и письменную речь учащихся;

проводить работу по овладению логическими операциями, суждениями, логическими выводами;

развивать в процессе изучения школьного курса математики представления, память, внимание учащихся, их волю, эмоции, интерес, способности.

Принцип научности:

содержание школьного курса математики должно в большей степени отвечать уровню современной математической науки;

знакомить учащихся с эмпирическими, логическими и математическими методами научного познания;

учить школьников замечать и обосновывать математические закономерности;

внедрять в учебный процесс элементы проблематичности, метода исследования;

раскрывать динамику развития самой науки математики;

К-во Просмотров: 269
Бесплатно скачать Реферат: Принципы дидактики в обучении математике Цели и содержание обучения математике в средней общеобразовательной