Реферат: Природа математических абстракций
Для более или менее подробного обсуждения предмета математики необходимо предварительно выяснить генезис и особенности ее важнейших исходных понятий, т.к. математика отличается от других наук, прежде всего, используемыми ею абстракциями. Стержневым вопросом философских проблем математики является отношение ее понятий к реальности, вопрос об объективном содержании математического знания. Чтобы лучше понять характер этих взаимоотношений, необходимо рассмотреть ключевой вопрос – процесс образования математических абстракций.
Процесс абстрагирования есть существенный и необходимый прием познания окружающей нас действительности. Если на чувственной ступени познания человек с помощью ощущений отображает явления природы, то путем мышления (в обобщенной форме и опосредованно) он проникает в сущность этих явлений. Однако было бы ошибкой полагать, что здесь происходит просто логическая переработка чувственных данных, что в мышлении нет ничего, чего не было бы в ощущениях.
Процесс абстрагирования и вытекающий из него процесс анализа являет собой отвлечение от несущественных сторон изучаемого объекта, выделение и рассмотрение только существенных свойств. Цель абстрагирования – получение более глубокого и «чистого» знания об объекте, чем на чувственной ступени познания. Таким образом, процесс абстрагирования завершается образованием исходных абстракций, однако они являют собой нечто неконкретное и одностороннее, поэтому для получения более глубоких и правильных знаний об изучаемом объекте, необходимо учитывать и вторую, чувственную ступень познания. Необходимо провести движение теперь уже от общего к частному путем синтеза.
Путем созерцания возможно познать лишь внешнюю сторону предмета, в то время как абстрагирование позволяет познать его сущность. Это объясняет то, почему современная математика зачастую способна глубже и адекватнее описать сложные процессы действительности, хотя по мере своего развития ее понятия имеют все меньше сходства с реальными явлениями окружающего нас мира, утрачивают свою наглядность.
Таковы характерные черты и возможности приема абстрагирования в его органическом единстве с методами восхождения от абстрактного к конкретному, анализа и синтеза. Но в чем же заключается своеобразие математических абстракций?
Специфика математических абстракций
Как уже отмечалось, процесс абстрагирования в обычных науках заключается в мысленном отвлечении от несуществующих сторон изучаемого предмета. Однако в математике все оказывается более сложным. Имеются ли такие исходные понятия, которые отображали бы реально существующие свойства и стороны предмета, явления, процесса? Подавляющее большинство ученых дает на этот вопрос отрицательный ответ.
И вот почему. Возьмем, к примеру, такую область математики, как геометрию. В материальной действительности мы, строго говоря, не найдем квадрата, треугольника, прямой линии и тому подобных объектов. Иначе говоря, формирование этих объектов нельзя понимать как результат выделения человеком каких-то математических свойств в явлениях внешнего мира. Они – результат творческого воображения, логического конструирования, идеализации.
Среди ученых бытуют противоположные взгляды, в частности, утверждение о том, что математические свойства и фигуры есть не что иное, как плод чистой фантазии, который ничего общего не имеет с объективной реальностью. Голландский ученый А. Гейтинг писал, что математика «не выражает истину о внешнем мире, а связана исключительно с умственными построениями». Это утверждение ставит исследователя на ошибочные позиции наивного реализма, идеализма, априоризма и конвенционализма. А Энгельс писал: «Понятия и фигуры взяты не откуда-нибудь, а из действительного мира. Десять пальцев, на которых люди научились считать, т.е. производить первую арифметическую операцию, представляют собой все, что угодно, только не продукт свободного творчества разума». Позже он дополнил свою мысль: «мы доходим до продуктов свободного творчества и воображения самого разума», т.е. до таких понятий, связь которых с окружающим миром непосредственно не просматривается.
Как же исторически и логически происходил процесс образования исходных понятий натурального числа в арифметике и фигуры в геометрии?
Как показывают исследователи древней культуры, в ранний период развития общества люди не имели понятия числа, хотя своеобразный счет ими, конечно, осуществлялся: скажем, величину стада овец они выражали с помощью пальцев рук. Со временем количество объектов стали определять путем отождествления их совокупности с равночисленным множеством других предметов. Например, одна из гипотез об изготовлении гигантских статуй на острове Пасхи звучит так: туземцы вытесывали туловища из серого камня и «парики» из красного в разных каньонах и, не умея считать, они были вынуждены употреблять камешки, сопоставляя их сначала с телами, а потом с головами.
Как мы видим, первоначально человек не отделял количество вещей от них самих, используя так называемые «именованные числа» - две руки, три пальца т т.п. Человек не абстрагировал понятие числа от понятия вещи. Этому он научился значительно позже. Человек начал пользоваться рядом натуральных, порядковых и количественных чисел.
Абстракция отождествления и понятие числа
Это был гигантский скачок в совершенствовании представлений человека о мире, как писал Д. Гильберт. При этом в сложном процессе становления понятия натурального числа первостепенное значение имела фундаментальная для науки абстракция отождествления. Кстати, использование ее далеко не ограничивается областью математики, как писала С.А. Янковская. Существенно, что выявление тождества не только не исключает, но, наоборот, предполагает различия между сопоставляемыми объектами. Без единства этих противоположностей сравнение как таковое теряет всякий смысл.
Эта абстракция использовалась Карлом Марксом в научной теории стоимости.
Итак, практические потребности в счете и измерениях, связанные с развитием общественного производства и совершенствованием экономики, явились причиной такого революционного акта, как возникновение понятия натурального числа, что, в свою очередь, послужило исторически исходным пунктом дальнейшего развития математики. А поскольку решающую роль сыграла абстракция отождествления, то логическое определение понятия числа осуществляется с обязательным ее использованием.
По мнению известного ученого Г.Фрёге, число есть не что иное, как общее свойство класса эквивалентных множеств – совокупностей предметов независимо от их качественной определенности и природы. Важно, что сравниваемые множества обладали изоморфизмом, когда каждому члену одного соответствует единственный член другого.
Наряду с использованием абстракции отождествления, в период зарождения математического знания применялась операция сравнения, которая допускает оценку в суждениях типа «больше», «меньше», «равно». В дальнейшем большую роль сыграла также операция косвенного измерения, когда фокус человеческого внимания смещался в сторону отношений между числами, в которых отражались реальные взаимосвязи между объектами, что свидетельствовало о возрастании активности познающего субъекта. Благодаря косвенному измерению возникли три другие простейшие арифметические операции – вычитание, умножение и деление. В.Вундт писал, что без косвенного измерения величин «никогда бы не развилось математическое мышление».
Понятие фигуры
Метод соотнесенности, который выявляет схожие черты в сравниваемых предметах, лежит в основе формирования понятия фигуры, поскольку при этом используется принцип подобия, выражающий важнейшее общее свойство различных геометрических тел. Понятие фигуры, в отличие от понятия числа, складывалось без его точного прообраза в действительности, поэтому человек вынужден был пользоваться не только абстракцией отождествления, но и приемом идеализации в чистом виде.
Сущность данного приема заключается в образовании таких абстракций, которые отражают не только реально существующие свойства объекта, а, как писал Н.А. Шанин, значительно отклоняющиеся или даже воображаемые. Как уже отмечалось, в природе не существует линий, точек, правильных треугольников, квадратов и других геометрических фигур. Но, тем не менее, без этих исходных, первоначальных понятий в математике не обойтись. И ученые вынуждены были логически конструировать такие объекты, имея лишь в какой-то мере сходную внешнюю форму предметов в окружающей нас действительности. Для примера лучше всего взять астрономию. Земля и другие планеты Солнечной системы, включай само Солнце, человеку давно представлялись в виде шара, но мы сегодня хорошо знаем, что это не совсем верные, а точнее – совершенно неверные представления. Так, наша планета как бы сплюснута в районе полюсов и поэтому является эллипсоидом вращения. Кроме того, на ней присутствуют неровности.
Исходные первоначальные понятия арифметики и геометрии не могут быть определены классическим способом (т.е. подведены под более широкое родовое понятие с указанием на видовое отличие), потому что не существует более широких фундаментальных категорий математического характера. По этой причине определения точки, прямой и других исходных понятий даны Евклидом на интуитивном уровне и при дальнейшем доказательстве теорем фактически не использовались. Геометрическая точка (по Евклиду) это то, что не имеет частей; у линии нет толщины, она является следом движущейся точки; плоскость – результат движения прямой линии и т.д. Впрочем, и значительно позже многие ученые вынуждены были давать определение исходных математических понятий на интуитивном уровне.
Количество и качество в математике
Итак, объекты действительности представляют собой единство дискретного и непрерывного (недизъюнктивность). Если в натуральном числе фиксируется дискретность и в связи с этим устойчивость внешней стороны явлений действительности, то в понятии фигуры – непрерывность и тоже устойчивость.
Примечательно, что натуральные числа и фигуры оказываются сходными с чувственными образами в том отношении, что в данных понятиях отображается внешняя сторона предметов действительности. Именно это имел в виду Платон, когда сближал математические абстракции с чувственностью. Но он не учитывал, что отмеченный феномен касается лишь исходных понятий математики.
Абстракции математики многоступенчаты, имеют разную степень общности. На первых этапах ее развития в понятии числа отвлекались от качественных особенностей реальных объектов, позже – от конкретных чисел и величин в результате создания алгебры и введения буквенной символики. Наконец, на современном этапе отвлекаются даже от конкретного содержания зависимостей, так что, например, обычные арифметические действия (сложение, вычитание, умножение и деление), осуществляемые с абстрактными объектами математических структур, предстают уже в виде абстрактных операций.
Абстракции современной математики в значительной степени отличаются от исходных понятий. Они выражают не только количественную сторону реальных процессов объективной действительности. В противном случае трудно объяснить удивительную, непостижимую «эффективность математики в естествознании», как писал Ю. Вигнер, т.е. тот факт, что ее нынешние модели зачастую описывают довольно неплохо сложные процессы материальной действительности.
Кстати, позиция сторонников количественной концепции, т.е. тех, кто предполагает, что математика исследует лишь количественную сторону процессов действительности и убеждены в том, что определения количества (и качества, соответственно) в математике должны быть отличны от философских, выглядит искусственной, неправомерной. Понятие количества и качества должны быть одинаковы для всех наук.
Количество – это и внешнее, и внутреннее, и различное в сходных по качеству объектах, и, вместе с тем, сходное в различных по своему качеству вещах. Это такая определенность предметов, явлений, которая характеризует их величину, форму, интенсивность свойств, темпы развития и т.п.
Попытки в прошлом дать два понятия материи (философское и естественнонаучное) были признаны ошибочными.
Математика в какой-то мере описывает и качественную сторону явлений материальной действительности (правда, частично, косвенно, опосредованно и своеобразно, с помощью особого искусственного языка), тем более, что существует неразрывная связь количества и качества.
Уже исходные категории математики количественную сторону явлений действительности отображают дизъюнктивно и в этом смысле неадекватно, огрублено. В дальнейшем используются понятия более высоких уровней общности (абстракции от абстракций), зачастую не имеющие никакого референта в окружающем мире (например, любой тройке действительных чисел соответствует точка в реальном пространстве трех измерений, а для четверки, пятерки и т.п. чисел адекватны уже так называемые многомерные, параметрические пространства). Тем не менее, современная математика точнее, полнее описывает реальные явления, чем раньше. Это происходит, очевидно, благодаря потенциальным возможностям аксиоматического метода и способностям развитой математики выражать в какой-то мере и качественную сторону процесса действительности. При этом количество не сводится к величинам или выражающим их числам, как это было до второй половины XIX в.
Заключение
Рассматриваемые абстракции обладают спецификой. Их характерной особенностью является следующее: отвлечение исходных категорий от качественной стороны объектов действительности, наличие элементов идеализации, значительная относительная самостоятельность этих понятий, ведущая к необходимости создания «идеальных элементов», не имеющих прообраза в объективном мире (например, квадратный корень из -1), иерархия математических абстракций.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--