Реферат: Проблема движения
Использование векторов позволяет строить описание весьма разнообразных объектов (материальных точек, сил, полей, состояний, численности населения городов, физиологических ощущений и т.д.), используя единообразные математические обозначения
Пользуясь аналогией с соотношениями (1-6), легко определить понятие вектора скорости изменения системы:
(10)
и обобщить все последующие соотношения на многомерный случай.
Движение материальной точки в пространстве трех измерений является частным примеров эволюции во времени весьма простой системы, исчерпывающее описание которой дается тремя декартовыми координатами, совокупность которых называется радиус-вектором:
(11)
(для обозначения “обычных” векторов в трехмерном пространстве будут использоваться жирные буквы без стрелок).
Сумма векторов определяется как вектор, составляющие которого являются суммами соответствующих составляющих слагаемых
(12) ,
а произведение на число - как вектор, составляющие которого получаются домножением составляющих исходного на это число:
(13) .
Легко убедиться, что все необходимые свойства (7-9) при таком определении операций выполняются. Производная радиус-вектора по времени получила название вектора мгновенной скорости:
(14) ,
а производная скорости - ускорения:
(15) .
По известной зависимости положения тела от времени R(t) его скорость и ускорение определяются однозначно. В случае заданной скорости V(t) для однозначного определения радиус-вектора R(t) необходимо знать положение тела в какой-то определенный момент времени (“начальное положение”). Если же задана зависимость ускорения от времени, то по ней может быть найдена скорость, а по последней - радиус-вектор. Очевидно, что решение будет однозначным, если заданы начальная скорость и положение тела.
Относительность механического движения. Однозначное задание радиус-вектора возможно лишь после задания системы координат. Различные системы координат могут по-разному располагаться в пространстве и иметь различные скорости движения. Получим связь между характеристиками движения материальной точки в неподвижной (0) и движущейся (0’) системах отсчета (рис. 3_3) . Пусть R(t) и R’(t) - радиус-векторы материальной точки в двух системах отсчета, а r(t) - вектор, задающий положений движущейся системы (0’) относительно неподвижной (0). Очевидно, что
(16) .
Дифференцируя равенство (16) по времени, получаем закон сложение скоростей, позволяющий находить скорость относительно движущейся системы отсчета V’, если заданы скорость движения тела в неподвижной V и относительная скорость движения систем отсчета v:
(17) .
Аналогичное соотношение справедливо и для ускорений.
Закон (10) показывает, что тело, покоящееся в одной системе отсчета, может двигаться в другой. Т.о. бессмысленно говорить о механическом движении вообще, не указав системы отсчета. Говорят, что механическое движение относительно.
Закон преобразования координат (16), записанный для частного случая равномерного прямолинейного движения одной системы отсчета относительно другой (рис. 3_4) носит название преобразований Галилея:
(18) .
Приведенные соотношения с точки зрения здравого смысла кажутся самоочевидными. На сомом деле при их выводе делаются весьма сильные допущения о том, что интервалы времени и длины отрезков одинаковы в обоих системах отсчета.
Эффект Доплера, являющийся следствием закон сложения скоростей, имеет много интересных проявлений в природе и технике. Пусть какой-либо источник создает с частотой периодическое возмущение (“сигнал”) , распространяющееся в пространстве со скоростью C (примером может служить распространение звуковых волн в воздухе). Эффект Доплера состоит в том, что в случае движения источника или приемника частота принимаемого сигнала изменяется. Пусть, например, источник приближается к неподвижному приемнику со скоростью V. Скорость движения сигнала относительно источника, согласно (17), равна c’=c-v. За время между излучением двух последовательных сигналов пройденный возмущением путь окажется равным (рис. 3_5). Приемник будет регистрировать приход сигналов через время , т.е. с частотой
(18) .
При удалении источника (V<0) регистрируемая частота оказывается меньше исходной (звук, например, будет казаться более низким), при приближении (V>0) - частота возрастает (звук становится более высоким). В случае V=C частота становится бесконечно большой, что в акустике соответствует возникновению ударной волны при движении источника со скоростью звука (т.н. звуковой барьер). При сверхзвуковом движении формула (18) формально дает отрицательное значение частоты, что соответствует приему сигналов, приходящих в обратном порядке по сравнению с их испусканием.
В оптике наблюдается сходный эффект, приводящий к изменению частоты излучения (цвета) источника: удаляющиеся источники выглядят “более красными”, приближающиеся - “фиолетовыми” Количественные соотношения несколько отличаются от (18), поскольку при решении задач о движении с около световыми скоростями закон сложения скоростей (17) перестает выполняться. Астрономические наблюдения показывают, что спектры излучения далеких звезд смещены в красную сторону (т.е. частота приходящего от далеких звезд света оказывается заниженной), что служит основой для предположения о разбегании галактик или расширении Вселенной. Измерения сдвигов частот показали, что скорости разбегания звезд пропорциональны расстояниям до них (рис. 3_6):