Реферат: Проблемно-орієнтовані мови програмування
Для того,щоб ряд Sun,де n від 1 до безмежності,збігався потрібно і достатньо,щоб для будь-якого е>0 існує таке no,що для всіх n>no має мати місце | un+un+1+…+un+p|<e.
Це твердження зразу слідує з критерію Коші існування кінцевої границі послідовності,застосованої до послідовних часткових сум даного ряду.
Признаки збіжності ряду .
Якщо члени ряду невід’ємні,то він сходиться тоді і тільки тоді,коли його часткові суми обмежені зверху.Тобто,якщо члени ряду невід’ємні,то послідовність часткових сум даного ряду зростає,а зростаюча послідовність має кінцеву границю тоді і тільки тоді,коли вона обмежена зверху.
Знакопочергові ряди.
Якщо послідовність {un} зменшується і наближається до нуля limun=0,то при
будь-якому n=1,2,3,… виконується рівність | sn-s |<= un+1 .
Ряди такого виду називаються знакочергувальними рядами. Часткові суми з парними номерами зростають.Оскільки послідовність {s2n} зростає і обмежена зверху,то вона меє кінцевий вигляд s= lims2n,де n прямує до нуля.
Абсолютно зб і жні ряди.
Ряд Sun,, де n прямує до нуля – називається абсолютно збіжним,якщо ряд, членами якого є абсолютні величини членів даного ряду S|un,|, де nзнаходиться в межах від 1 до безмежності,сходиться .
Для того щоб ряд абсолютно сходився,необхідно і достатньо,щоб для будь-якого е>0 існувало таке no ,що для всіх номерів виконувалась нерівність S|un+k| <e , де к від 1 до р ,а р знаходиться в межах від 1 до безмежності.Звідси випливає,якщо ряд абсолютно збіжний,то він є також просто збіжним.В загальному в силу властивостей критерія Коші є те,що абсолютна збіжність ряду,для будь-якого е>0 існує таке no ,що для всіх n> no і всіх p>=0 права частина нерівності менша е. Звідси випливає , що і ліва частина є також меншою від е.
Тобто для ряду виконується критерій Коші збіжності рядів тому ряд збігається.
Якщо ряд абсолютно збігається,то будь-який ряд співставлений з тих же членів,що і даний ряд,але взятий в другому порядку ,буде також абсолютно збіжний.
Умовно збіжні ряди .
Збіжний , про те не абсолютно збіжний ряд називається умовно збіжним рядом.Якщо одна із множин {un+} i {un-} ,буде кінцевою , то, відкинувши в ряді відповідне кінцеве число перших членів ряду , одержимо залишок ряду , члени котрого будуть не від’ємні або не додатні , а в другому випадку не від’ємні після множення всіх членів на –1.І в цьому і в другому випадку , якщо вихідний ряд збіжний , то він очевидним чином абсолютно збігається .
Якщо ряд умовно збігається , то два ряди розбігаються .
ТЕОРЕМА Рімана .
Якщо ряд з дійсними членами умовно збігається , то , яке б не було дійсне число S, можна так переставити члени ряду , що сума одержаного ряду буде рівна S .
Нехай є члени ряду – дійсні числа і нехай довільно взяте число S .Дано ще один ряд .Наберемо декілька членів , щоб їхня сума перевищувала S , тобто позначимо через n1 найменше натуральне число , при якому виконується умова un+……+un1 >S . Тоді при n1 >1 ,буде мати місце нерівність un+……+un1-1 <=S .
Можливість вибору токого числа виходить із розбіжності ряду.Наберемо тепер з одного з рядів підряд декілька членів , щоб , порахувавши їхню суму , одержати менше S.
Теорема Рімана показує, що однією з основних властивостей кінцевих сум чисел – незалежність їх суми , від порядку доданків – не переноситься на збіжні ряди , на нескінченні суми .Також для умовно збіжних рядів існують теореми Абеля і Діріхле.
Признак Абеля.
Якщо послідовність {an} обмежена і монотонна , а ряд Sbn , де n лежить в межах від 1 до безмежності , сходиться , то і ряд Sanbn ,буде також збіжним.З обмеженості і монотонності послідовності {an} випливає існування кінцевої границі liman= a+ an.Тут послідовність {an} – монотонна і наближається до нуля .
Сумування рядів методом середніх арифметичних.
Якщо заданий числовий ряд розбіжний , то інколи виявляється корисним визначити суму ряду не простим способом – як границю його часткових сум , а якимось іншим .
Одним з таких способів , називається сумування рядів методом середніх арифметичних . Для ряду Sun , де n лежить в межах від 1 до безмежності , зробивши з його часткових сум їх середнє арифметичне , при цьому , якщо існує кінцева границя limQn= Q ,
то заданий ряд називається сумуючим методом середніх арифметичних . Поняття сумування ряду методом середніх арифметичних є узагальненим поняттям збіжності ряду , сумування методом середніх арифметичних дає зрозуміти , що всякий збіжний ряд , який ми сумуємо методом середніх арифметичних йде до своєї суми .
Збіжність функціональних послідовних рядів .
Нехай у деякій довільній множині Х задана послідовність функцій , які приймають числові значення . Елементи множини Х називають точками . Ця послідовність функцій називається обмеженою на множині Х , якщо | f n(x) | <=c , і називається збіжною в протилежному випадку .
Рівномірне сходження функціональних послідовностей і рядів.
Функціональна послідовність називається рівномірно збіжною до функції f на множині Х , якщо для будь – якого е>0 існує такий номер no , що для всіх номерів n>no виконується нерівність | f n (x) – f (x) | < e .
Очевидно , що якщо послідовність рівномірно сходиться на множині Х до функції f , то ця послідовність збігається до функції .
Спеціальні признаки рівномірної збіжності рядів .
Якщо послідовність функції an(x)належитьR , рівномірно наближається на множині Х до нуля і в кожній точці х належить Х монотонна , а послідовність функції bn(x) належить Х , так , що послідовність часткових сум ряду Sbn (x) , де n лежить в межах від 1 до безмежності , обмежена на Х , то ряд San(x)bn(x) , де n лежить в межах від 1 до безмежності , рівномірно сходиться на множині Х .
Якщо послідовність функції an(x)належитьR , обмежена на множині Х і монотонна в кожній точці х належить Х , а ряд рівіномірно сходиться на Х , то і ряд San(x)bn(x) , де n лежить в межах від 1 до безмежності , також рівномірно сходиться на множині Х .
Степеневі ряди.
Степеневим рядом називається ряд виду San(z-zo),де n-лежить в межах від 1 до безмежності,числа an-називаються коефіцієнтом ряду.Розглянемо тепер аналітичні функції, котрі розкладаються в степеневий ряд з дійсними коефіцієнтами в деякому радіусі точки дії осі R.Якщо така функція f аналітична в точці xo, яка належить R,то в деякому радіусі цієї точки на дійсній осі функція f представляється в вигляді суми степеневого ряду
f (x)=San(x-xo)