Реферат: Проблемы космологии

Пензиас и Вильсон не могли отве­тить на этот вопрос. Для начала они попытались определить характери­стики обнаруженного ими шума и в первую очередь его интенсивность. А интенсивность теплового радиошума очень удобно описывать, пользуясь понятием обычной температуры. Действительно, любое тело “шумит” в радиодиапазоне за счет теплового движения электронов внутри тела. Грубо говоря, чем выше температура, тем выше интенсивность теплового шума. Поэтому в радиотехнике используется понятие “эквивалентной температуры” радиоизлучения. Итак, оказалось, что шум, открытый Пензиасом и Вильсоном, имел температуру около 3,5 К. (Здесь нельзя не сказать о том, что за год до открытия Пензи­аса и Вильсона советские астрофизики А. Дорошкевич и И. Новиков теоре­тически предсказали возможность обнаружения реликтового излучения в сантиметровом диапазоне. Но, к сожалению, на эту работу не обра­тили тогда должного внимания экспе­риментаторы.)

Случай играет не последнюю роль в науке. Ведь Пензиас и Вильсон понятия не имели о том, что такое реликтовое излучение. Они просто натолкнулись на него. А практически в то же время всего в нескольких десятках километров от антенны фир­мы “Белл” группа Р. Дикке, крупного американского астрофизика, строила специальную антенну для поиска отголосков Большого Взрыва.

Дикке знал о работах Гамова и придавал им большое значение. Именно поэтому, когда астрофизики узнали о результатах Пензиаса и Вильсона, Дикке мгновенно объяснил их, и соответствующие публикации в журнале “Nature” появились одновре­менно, но с экспериментальными результатами Дикке опоздал пример­но на полгода. 20 лет размышлял Нобелевский комитет, кому прису­дить премию — счастливчикам Пензиасу и Вильсону или Р. Дикке. Как мы знаем, выиграли счастливчики.

Конечно же, это открытие могло быть сделано и раньше. Ведь о Боль­шом Взрыве говорили и до 1965 года. Но, как указал лауреат Нобелевской премии по физике Е. Вигнер, теория Большого Взрыва не привела к поиску реликтового излучения потому, что физикам было трудно серьезно вос­принять любую теорию ранней Все­ленной: “Это открытие заставило всех нас всерьез отнестись к мысли, что ранняя Вселенная была”.

Большой взрыв

О Большом Взрыве ежегодно публику­ется огромное число статей и в науч­ной и в научно-популярной печати. Но самое-то интересное заключается в том, что взрыва в обычном понимании этого слова не было! Справедливо ли применять слово “взрыв” к начальным стадиям расши­рения Вселенной? Другими словами, можно ли сказать, что огромное дав­ление сжатой в точку Вселенной яви­лось причиной ее расширения (взрыв бомбы)?

Нет! При взрыве расширение про­исходит из-за разности между боль­шим давлением продуктов взрыва и малым давлением окружающего их атмосферного воздуха. Но когда мы рассматриваем раннюю Вселенную, понятия “снаружи” и “внутри” теряют смысл, а давление в однородной Вселенной распределено равномер­но. Между различными частями Все­ленной нет разности давления, а зна­чит, нет и силы, вызывающей расши­рение.

В чем же дело? Почему Вселенная начала расширяться? На этот вопрос сегодня нет общепринятого ответа.

Очень трудно говорить о тех време­нах, когда вся видимая сегодня Все­ленная была величиной с маковое зернышко. Но предполагается, что она действительно миллиарды лет тому на­зад была именно таких размеров (и даже меньше) и действительно стала расширяться.

Сегодня космология еще не в со­стоянии ответить на ряд принципиаль­ных вопросов. Среди них основные: что было до начала наблюдаемого расширения? Будет ли Вселенная веч­но расширяться или опять сожмется в точку (как говорят физики, образует­ся ли снова сингулярность — состоя­ние вещества с бесконечной плотно­стью) ? Мы надеемся, что ответы на эти вопросы будут получены в близ­ком будущем.

Но отсутствие ответов сейчас, се­годня, не мешает физикам рассмат­ривать самые ранние стадии расшире­ния Вселенной. Некоторые теории оперируют с временами 10-35 секун­ды от начала. Это, по выражению ака­демика Я. Зельдовича, “очень-очень ранняя Вселенная”. Есть теории, кото­рые “заглядывают” в еще более ран­ние моменты времени. Термин “Боль­шой Взрыв” сейчас общепринят, и мы его будем использовать. Тем более что скорости процессов, происходя­щих при “рождении” нашего Мира, в неизмеримое число раз превышают скорости любых известных сегодня взрывных процессов. Поэтому-то рас­ширение Вселенной действительно можно уподобить “сверхвзрыву”, Большому Взрыву.

Почему для нас так важны началь­ные этапы развития Вселенной, поче­му космологи пытаются проанализировать самые ранние моменты, загля­нуть как можно глубже в прошлое на­шего мира? Да потому, что никакая космологическая модель, никакая теория невозможна без достаточно полного понимания начальных этапов развития Вселенной — ведь именно тогда закладывалось ее будущее, все последующие стадии ее формирова­ния. И эти стадии нельзя понять, не зная, какой была ранняя, горячая Все­ленная. Чтобы представить себе раз­витие Вселенной, следует прежде все­го постараться понять, что представ­ляло собой вещество Вселенной, мате­рия на разных этапах ее существова­ния.

Важность постановки такой задачи очевидна. Ведь решения уравнений ОТО, полученные Фридманом, гово­рят о том, что Вселенная расширяет­ся из точки, из сингулярности. Но ре­шения эти, с другой стороны, ничего не говорят о состоянии и поведении вещества вблизи сингулярности, а для нас сейчас, когда мы начинаем рас­сматривать ранние стадии Вселенной, именно это и является самым глав­ным.

До сих пор мы говорили лишь об ОТО, которая описывает процессы расширения и сжатия мира. Но совер­шенно ясно, что сейчас для рассказа о поведении вещества мы должны об­ратиться к другим физическим тео­риям.

Вопросы, рассматриваемые нами, исключительно сложны, а очень мно­гие их аспекты еще ждут своего реше­ния: Но именно эти задачи и являются на сегодня наиболее “горячими точка­ми” современной физики и космоло­гии. Какими же теоретическими “ин­струментами” пользуются современ­ные ученые?

Самая красивая из физических тео­рий — ОТО представляет собой типич­ный пример классической теории. Что это значит? В уравнения ОТО не вво­дится никаких новых фундаменталь­ных физических постоянных. В них присутствуют лишь скорость света и гравитационная постоянная Ньютона.

Другим примером классической теории является электродинамика, со­зданная более ста лет назад Д. Макс­веллом. Всего 80 лет назад большинст­во физиков свято верило, что в приро­де существует лишь два вида фунда­ментальных взаимодействий — гра­витация и электромагнетизм. Они имеют неограниченный радиус дейст­вия и могут быть не только измерены с помощью приборов, но хорошо из­вестны “в быту”: если, например, кир­пич упадет на голову, можно не со­мневаться в том, что вы на практике столкнулись с гравитацией. Электро­магнитные взаимодействия также хо­рошо знакомы каждому человеку, по­скольку самые разнообразные физи­ческие, химические, биологические явления зависят от электромагнетиз­ма.

Однако более 80 лет назад из ми­кромира поступили тревожные сиг­налы о том, что классическая физика не в состоянии описать явления, про­исходящие в масштабах отдельных атомов. Хорошо известно, что соглас­но классической теории электромаг­нетизма электрон в атоме должен “упасть” в конце концов на атомное ядро из-за непрерывного излучения энергии. С этим и другими парадокса­ми оказалась в состоянии справиться лишь квантовая теория поля.

Суть квантовой теории (а именно она вызывала неприятие у Эйнштей­на) состоит в том, что, располагая да­же максимальной информацией о фи­зической системе, квантомеханический подход определяет лишь вероят­ность того или иного события в микро­мире и не предсказывает точного поведения системы.

“Бог в кости не играет”,— говорил Эйнштейн, отрицая вероятностный подход квантовой физики к описанию физических явлений. В течение послед­них лет своей жизни Эйнштейн пытал­ся создать единую теорию поля, об­щую классическую теорию, классиче­скую в том смысле, что физические яв­ления в ней должны полностью описы­ваться, если известны значения всех рассматриваемых физических пере­менных. Мы знаем, что на этом пути Эйнштейн потерпел неудачу. Однако вернемся к ОТО. Как уже го­ворилось о том, что эффекты ОТО наибо­лее заметно проявляются в сильных гравитационных полях. Так почему же мы заговорили о границах ее приме­нимости? “Узкое место” здесь — син­гулярность, начало расширения Все­ленной.

Совершенно ясно, что если считать сингулярность точкой, математиче­ской абстракцией, то нечего вообще говорить ни о каких физических зако­нах в этой точке. Но дело в том, что Вселенная материальна; грубо гово­ря, мы знаем, что она имеет вес. Именно поэтому реальное вещество, материя всегда будет занимать ка­кой-то конечный, отличный от нуля объем.

Поскольку поведение Вселенной во времени описывается уравнениями ОТО, то вопрос о границах примени­мости этих уравнений на ранних ста­диях Вселенной в условиях экстре­мально малых размеров и экстремаль­но больших плотностей вполне право­мочен. Пространство — время чудо­вищно искривлены, и, поскольку мы стремимся к сингулярности, речь идет уже не о маковом зернышке, а о гораздо меньших объемах. Не могут ли здесь играть роль квантовые эф­фекты?

Когда теоретики начали исследо­вать этот вопрос, то оказалось, что “ответ” на него был дан в конце про­шлого века, то есть когда ОТО еще не была создана. “Ответ” был дан М. Планком, одним из творцов кван­товой физики. Планк ввел свою знаменитую постоянную h в теорию излучения в 1899 году и тогда же, добавив к ней скорость света с и постоянную тяготения G, показал, что из этих констант можно составить ве­личины любой размерности, например плотность, длину.

Очень интересно отношение само­го Планка к этим постоянным. Он, как, впрочем, и любой другой великий физик, считал, что цель физики — объяснение устройства мира. Планк глубоко верил, что наука не должна нести в себе отголоски индивидуаль­ного мышления, физические законы должны быть абсолютны во всей Все­ленной.

Глубокие идеи Планка не потеряли своего значения и сегодня, спустя бо­лее 80 лет. Планковские константы се­годня считаются предельными в фи­зике величинами. Именно на планковской длине перестает “рабо­тать” ОТО. На этом масштабе плот­ность вещества чудовищна. Она неиз­меримо превышает плотность атом­ного ядра. Эти величины очень труд­но представить себе наглядно. Дейст­вительно, ядерная плотность равна примерно 1014 г/см3 . Другими слова­ми, один кубический сантиметр атом­ных ядер весил бы сто миллио­нов тонн. А планковская плот­ность вещества превышает ядерную на 80 порядков! Единица с 80 ну­лями!

И здесь в сверхсильных гравита­ционных полях начинают возникать квантовые эффекты. Отметим, что когда речь идет о квантовых эффек­тах в условиях сильной гравитации, то, быть может, сами понятия “прост­ранство” и “время” теряют привыч­ный для них смысл. Как хорошо ска­зано в книге Я. Зельдовича и И. Нови­кова “Строение и эволюция Вселен­ной”: “Насколько легко найти область, где важны квантовые явления, на­столько же трудно выяснить, что про­исходит в этой области. Здесь стано­вится трудно даже сформулировать проблему”.

Действительно, задача о ранней, “планковской”. Вселенной исключи­тельно сложна. Мы просто не знаем, как ведет себя вещество, что оно со­бой представляет в этих бесконечно малых масштабах длин, сочетающих­ся с бесконечно большими плотностями и температурами.

Экспериментаторы “добрались” пока до длин порядка лишь 10-16 см. Это мир элементарных частиц, сверх­высоких энергий, и именно поэтому физика ранней Вселенной теснейшим образом смыкается с физикой микро­космоса. К сожалению, как сказал лауреат Нобелевской премии по фи­зике С. Вайнберг, “незнание микро­скопической физики стоит как пелена, застилающая взор при взгляде на са­мое начало”.

Космология оперирует с еще мень­шими расстояниями и большими энер­гиями, чем те, что привычны для фи­зики элементарных частиц. Ведь рас­сматривая самые ранние этапы, мы неизбежно приходим к какому-то моменту времени (порядка планковского), когда классическая ОТО не­применима. Здесь предстоит еще огромная работа.

Микрофизика

Согласно бурно развивающейся в последние годы кварковой теории все адроны состоят из “более” эле­ментарных частиц — кварков. Если эта теория верна (а она получает сей­час убедительные доказательства в различных экс?

К-во Просмотров: 234
Бесплатно скачать Реферат: Проблемы космологии