Реферат: Проблемы создания искусственной крови
Важным направлением в современном развитии проблемы создания "искусственной крови" является создание неких микротелец или микрокапсул, содержащих гемоглобин. Тяжелые физиологические последствия разрушения эритроцитов известны давно, и еще в 1971 г. были сделаны первые попытки создания искусственных эритроцитов в виде твердых нейлоновых капсул с гемоглобином (T. Chang). Но первые опыты были неудачны, а перспективную идею вывели из небытия совсем недавно M.C. Farmer и B.P. Garber, создав методику получения липосом. При осуществлении микрокапсулирования растворов гемоглобина для создания искусственных мембран используются, кроме липидов, и синтетические полимеры, некоторые полимеризованные белки. Толщина получаемых мембран сравнима с толщиной мембран эритроцитов.
Основная проблема - короткий период циркуляции микрокапсул в кровеносном русле. А в 1989 г. Е. Tsuchida с помощью новейших методов создал структурные единицы в виде телец овальной формы диаметром в среднем 0,1 мкм. Каждая частица состояла из 500 - 2300 гемов гемоглобина, заключенных в двухслойную фосфолипидную мембрану. Двухслойная мембрана липосом обладала повышенной механической прочностью и стабильностью. Последняя значительно увеличивалась при внедрении особым способом в состав мембран токоферола (витамина Е), являющимся сильным антиоксидантом. Он предохранял мембрану от разрушительного действия оксидантов и удлинял срок сохранения ее структурной целостности. При замещении крови на 80 - 90% все животные выживали. Из этого следует, что по сути дела речь идет о создании аналогов функционирующей клетки.
Казалось бы, что эта упрощенная модель эритроцита, судя по экспериментальным данным, может успешно функционировать в человеческом организме, и пора бы переходить на клинические испытания. Но в этих липосомах гемолипидный комплекс был способен осуществить лишь около 1 тысячи циклов "оксигенация - дезоксигенация". Это означает 6 - 8 часов "работы". Эритроцитарный же гемоглобин функционирует в течение 90 - 120 дней (по другим данным 40 дней) и способен осуществить 400 тысяч циклов.
Кроме этого, автор в своей работе засекретил методику изготовления микротелец, но, учитывая строение микротелец и насколько сложна их конструкция, можно предположить, что методика очень дорогая и трудоемкая, и она не сможет удовлетворить потребности, например при массовом травматизме. К тому же возникает вопрос о механизмах разрушения и дезактивации таких очень сложных структур и продуктов их разрушения. Отмечается также внедрение искусственных липосом в элементы ретикулоэндотелиальной системы клетки и нарушении ее функции [3, 6, 22].
Самой важной проблемой создания "искусственной крови" данного направления остается сохранение гемоглобином нативных свойств в течении длительного промежутка времени. В норме непрерывно происходящее разрушение этой сложной молекулы в эритроците купируется с помощью биологической работы ресинтеза, которая протекает с использованием энергии за счет гидролиза АТФ. Возможность искусственного получения таких мембран была показано еще 20 лет назад. Имеется принципиальная возможность создания таких мембран и для гемоглобинсодержащих липосом, но такая перспектива выглядит довольно отдаленной [6, 12].
Очень перспективным и довольно интересным является другой вариант конструкции кислородпереносящих кровезаменителей на основе гемоглобина является разработка конъюгированного (или модифицированного) гемоглобина. Обычно это соединение гемоглобина с некоторыми органическими молекулами, которые защищают гемоглобин от разного рода внешних воздействий.
В качестве защитного вещества можно использовать полиоксиэтилен. В опыте было показано, что при замещении крови этим раствором у собак до 5 % каких-либо функциональных и органических изменений обнаружено не было. Полупериод жизни препарата составил 36 часов. Но снова возникает вопрос, на который в литературе нет ответа: а каковы механизмы разрушения такой сложной системы. Но и еще полупериод жизни 36 часов предполагает во времени повторную трансфузию, а последствия повторных массивных инфузий неизвестны, а поэтому непредсказуемы [6, 8]. Хотя известно, что в растворе полимеризованных гемоглобинов есть вызывающие токсичность примеси - стромальные липиды, эндотоксины, высокомолекулярные фракции гемоглобина, а через почки выводится лишь только половина гемопротеида, вторая половина из плазмы исчезает, но не появляется в моче, т.е. захватывается организмом. Большую роль в это играет процессы трансгемирования гемоглобина ( переход гема с гемоглобина на человеческий сывороточный альбумин). Поэтому эти препараты с осторожностью назначают при печеночной недостаточности в связи с нарушением белковообразовательной функции печени [15].
Недостаток модифицированного гемоглобина - в более высоком, по сравнению с донорской кровью, сродстве к кислороду, что связано с отсутствием регулятора обратной оксигенации и более низкой кислородной емкости. В последнее время найден метод, который позволяет устранить этот недостаток путем создания модифицированного гемоглобина, способного к обратимой оксигенации. Регулятором в таком случае является имизатглутаралальдегида: в атмосфере азота к глобину присоединяется пиридоксаль-фосфат, в дальнейшем полимеризация полученных комплексов посредством сшивания глутаралальдегидом. В качестве основы для такого полимеризованного гемоглобина можно использовать даже гемоглобин крупного рогатого скота. Но при всех этих преимуществах наблюдаются выраженные иммунные реакции организма на введение такого препарата, полученного из гемоглобина животных. Кроме того, применяется еще и внутримолекулярная сшивка для увеличения времени циркуляции препарата в кровеносном русле, но при этом нужно учитывать доказанную экспериментально малую селективность его, приводящую к образованию производных гемоглобина [3].
Вследствие больших размеров молекулы модифицированного гемоглобина (при его степени полимеризации свыше 25 - 30%) увеличивается СОЭ до 55 - 60мм/ч [1].
В последнее время активизировались исследования бычьего гемоглобина с целью использования его в качестве основы для создания "искусственной крови". Бычий гемоглобин тщательно очищают от примесей путем кристаллизации, полимеризуют и соединяют его с пиридоксаль-фосфатом.
Благодаря слабым антигенным свойствам бычий гемоглобин в принципе может быть использован для конструирования "искусственной крови". Но нельзя не учесть возможность анафилактических реакций, при повторной инфузии их вероятность увеличивается во много раз [6]. Бычий гемоглобин имеет преимущество над человеческим своей высокой доступностью и низкой стоимостью; отсутствием риска заражения реципиента инфекционным гепатитом и СПИДом; кроме этого, в силу своих структурных особенностей имеет низкое сродство к кислороду, близкое к таковому для донорской крови человека. Это позволяет избежать при получении полимера из бычьего гемоглобина по сравнению из гемоглобина человека весьма трудоемкого этапа - присоединения регулятора обратимой оксигенации пиридоксаль-5'- фосфата [16].
4. Перфторуглеродные эмульсии.
Другое направление создания "искусственной крови" - создание синтетической модели крови на основе перфторорганических соединений.
Уникальные свойства ПФУ - способность растворять кислород и углекислоту, высокая инертность - послужили основанием для создания кислородпереносящих кровезаменителей именно на основе перфторуглеродов. Первое поколение ПФУ - флюосол- ДА (Япония) был испытан в клинике [13].
Перфторированные жидкости полностью нерастворимы в воде и поэтому в качестве кровозаменителей их можно использовать только в виде эмульсий. Капельки эмульсии можно рассматривать как своеобразную модель эритроцита, где фторуглерод заменяет гемоглобин, а слой эмульгатора наружную мембрану эритроцита. Но, в отличие от гемоглобина, характер присоединения и отдачи кислорода эмульсией перфторуглеродистых соединений иной. Кривая диссоциации цельной крови (оксигемоглобин) имеет S-образную форму, зависимость насыщения же фторорганической эмульсии от парциального давления кислорода выражается на графике прямой линией [7]. Известны ПФУ, обладающие повышенной кислородной емкостью: диметиадамантан, октилбромид и некоторые другие [6, 19].
В рецептуру большинства существующих в настоящее время эмульсий перфторорганических соединений, предназначенных для применения в медицинской практике, включен синтетический эмульгатор, относящийся к классу поверхностноактивных веществ - блоксополимер оксида этиленаоксида пропилена, известный в зарубежной литературе под названием "плюроник", а в отечественной - "проксанол".
Это поверхностно-активное вещество стабилизирует перфторорганические соединения in vitro, препятствуя процессу коалесценции [17].
Эмульсии перфторорганических соединений могут быть использованы для трансфузии, по мнению некоторых исследователей, только лишь в том случае, если животные или человек будут дышать при этом не воздухом, а кислородом [7,21].
Известно, что различные эмульсии перфторорганических соединений неодинаково выводятся из организма, некоторые из них могут длительное время сохраняться в организмах экспериментальных животных. Это представляет серьезную проблему, решить которую позволят исследования длительности нахождения фторуглеродов в организме, времени циркуляции в кровотоке, мест кумуляции и депонирования, методов дезинтоксикации и путей выведения из организма. Кроме того, частицы эмульсии перфторорганических соединений способны сорбировать большие количества холестерина и липидов, что, возможно, влияет на время циркуляции в кровотоке и места кумуляции. Этот эффект сорбции можно использовать в медицинской практике, в частности в кардиологии. Эффект нужно учитывать при разработке новых эмульсий ПФУ и иметь ввиду при назначении таких препаратов больным с большим содержанием холестерина в крови. У эмульсий ПФУ есть еще один эффект, который нельзя не учитывать: применение их в качестве кислородпереносящих кровезаменителей активирует в клетке функции цитохрома Р 450. Такой эффект указывает на повышенное образование в клетке кислородных радикалов, которые могут участвовать в разрушении клеточных структур. Эмульсии ПФУ не влияют на реакцию связывания аллоантигенов человека с полными (АВО) и неполными (Rh), алло- и преципитирующими ксеногенными антителами и, следовательно, на определение групповой и резуспринадлежности крови. Присутствие эмульсии ПФУ заметно угнетает реакцию лимфоцитотоксических HLA - антител с лимфоцитами, розеткообразование Т- и В-лимфоцитов. Эмульсии ПФУ обеспечивают эффективное восстановление капиллярного кровотока, функционального состояния микрососудов и перфузии тканей.
Одним из недостатков инфузии кровезамещающего раствора является некоторое ухудшение агрегатного состояния крови и повышение проницаемости микрососудов. Вполне вероятно, что эти качества препарата связаны с недостаточной очисткой исходного материала и неполной гомогенностью суспензии [17, 6, 11, 9, 10, 20].
5. Заключение.
Важным разделом разработки новых кровезамещающих растворов для лечения кровопотери и шока является организация их доклинического и клинического изучения. При этом методика должна быть четко стандартизирована, исключительно большой значение имеет создание унифицированных моделей кровопотери, шока, которые могут быть реализованы для доклинической оценки новых кровезаменителей.
Эффективность нового кровезаменителя должна быть сопоставлена с эффективностью имеющихся аналогов. Следует считать весьма актуальной задачей более широкое применение методики перфузии изолированных органов при доклиническом изучении кровезаменителя и предварительном скрининге их компонентов. Окончательный итог работы по созданию нового кровезамещающего раствора, его качество и эффективность может быть объективно определены только на основе единой системы стандартизированных оценочных показателей доклинического изучения [18].
На основе теоретического материала сформулированы клинические требования к кровезаменителям:
1. Кислородпереносящие кровезаменители должны обеспечивать "вклад" в транспорт кислорода кровью при снижении гематокрита ниже 30% или по крайней мере 25%.
2. Это не должно сопровождаться сколько-нибудь значительным напряжением сердечно-сосудистой системы.
Два основных пути решения проблемы: