Реферат: Прогнозирование энтропии образования органических веществ

;

· атомы кремния с четырьмя различными заместителями, например, в молекуле метил-(1-нафтил)фенилсилана;

· атомы трехвалентного фосфора в фосфинах или четырехвалентной серы в сульфоксидах с набором различных заместителей при фосфоре или сере, в соединениях которых заместители расположены пирамидально, но структуры являются фактически тетраэдрическими с учетом свободной электронной пары;

· центр молекулы адамантанового ядра с различными заместителями в 1,3,5,7-положениях адамантана;

· оси хиральности, например, для молекул алленов с различными заместителями при крайних углеродных атомах или для 2,2',6,6'-тетра-замещенных бифенилов, размеры заместителей в молекулах которых препятствуют вращению вокруг простой углерод-углеродной связи между ароматическими ядрами, если сумма ван-дер-ваальсовых радиусов орто-заместителей превосходит 0,290 нм; таким соединениям свойственна пространственная изомерия (атропоизомерия - где тропос - поворот (греч.), атропо- нет поворота);

· плоскости хиральности, например, в производных ферроцена;

· спиральность, например, в белках, нуклеиновых кислотах или гелиценах (простейшая модель спиральности) с шестью и более орто-конденсированными бензольными ядрами, которые не могут расположиться в одной плоскости и образуют правую или левую спираль.

Из перечисленных элементов хиральности для относительно несложных структур наиболее часто встречающимися являются асимметрические углеродные атомы. В этом случае максимальное количество оптических изомеров равно , где “m” - число асимметрических атомов углерода.

Если набор заместителей при различных асимметрических углеродных атомах одинаков, то количество оптических изомеров уменьшается вследствие образования мезо-формы. При расчете величины поправки на смешение оптических изомеров в этом случае концентрация мезо-формы в первом приближении может быть принята равной суммарной концентрации равновесной с ней dl-формы. Таким образом, для структур с двумя асимметрическими атомами в молекуле имеем поправку на смешение оптических изомеров, равную

= –8,3147·(0,5·ln(0,5)+0,25·ln(0,25)+0,25·ln(0,25)) =

= 8,64 Дж/(моль×К).

Если центры асимметрии находятся не при соседних атомах, то весь соединяющий их фрагмент считают за одну связь.

Наличие асимметрических углеродных атомов в циклических соединениях также требует при прогнозировании энтропии учета вклада на смешение оптических изомеров. Однако при этом необходимо учитывать специфику строения молекул интересующего циклического соединения.

Так, например, в молекулах монозамещенных циклогексанов (ЦГ) заместитель может находиться в двух различных положениях - экваториальном и аксиальном. Однако при этом не возникает никаких изомеров, поскольку в результате инверсии цикла аксиальный заместитель становится экваториальным, и наоборот.

В случае дизамещенных циклогексанов с заместителями у разных атомов цикла молекула имеет два асимметрических атома углерода и, по аналогии с нециклическими структурами, должна бы существовать в виде смеси четырех оптических изомеров, если заместители различны. Тем не менее, в сопоставимых концентрациях реализуются в большинстве случаев два изомера - например, экваториально-аксиальный (еа) для цис-1,2-дизамещенного-ЦГ и экваториально-экваториальный (ее) для транс-1,2-ЦГ.

Неоднозначность учета вклада на смешение пространственных изомеров становится еще большей при переходе от моноциклических структур к полициклическим. В качестве примера можно привести монозамещенные (в любом из метиленовых фрагментов) производные норборнана - бицикло[2.2.1]гептана и гидриндана - бицикло[4.3.0]нонана. Каждое из них имеет три асимметрических углеродных атома: два узловых и один - с заместителем. Однако для производных норборнана количество стереоизомеров равно четырем, а для гидриндана, как и положено, восьми. Объясняется такое различие тем, что конфигурацию узловых атомов в молекуле норборнана можно изменить только одновременно по причине жесткости структуры. Ясно, что при таком различии в количестве стереоизомеров вклады в энтропию, обусловленные их смешением, будут различны. Ясно также и то, что введение поправки на смешение изомеров для циклических структур требует дополнительных экспериментальных или расчетных сведений о соотношении равновесных концентраций всех возможных стереоизомеров.

Прочие вопросы прогнозирования органических соединений методом Бенсона решаются в той же последовательности, что и прогнозирование (разд. 1.), т.е. вычисляется аддитивная составляющая энтропии (табл. 1.2.) и вводятся необходимые поправки. Последние включают в себя поправки, обусловленные специфическими особенностями строения молекул данного класса соединений и включенные в таблицу парциальных вкладов метода Бенсона (табл. 1.2), а также упомянутые выше статистические поправки - на симметрию молекулы рассматриваемого вещества и число оптических изомеров, его представляющих. Сказанное иллюстрируется примерами 2.1-2.3.

Пример 2.1

Методом Бенсона рассчитать 2-метил-3-этилгексана.

Решение

1. Структурная формула молекулы рассматриваемого вещества такова:

2. Расчет энтропии включает в себя:

· вычисление аддитивной составляющей свойства по данным табл. 1.2. - число парциальных вкладов в свойство для алканов равно числу углеродных атомов в молекуле, т.е. девяти для 2-метил-3-этилгексана;

· вычисление поправки на симметрию молекулы в целом и ее вращающихся симметричных групп: молекула в целом несимметрична (), но содержит четыре симметричных метильных группы, каждая из которых обладает осью симметрии третьего порядка (), т.е. полное число симметрии молекулы 2-метил-3-этилгексана составляет ;

· вычисление поправки на смешение оптических изомеров: молекула содержит один асимметрический атом углерода (отмечен в структурной формуле звездочкой), т.е. представлена двумя оптическими изомерами (d и l) с равными концентрациями, а значит,

= 5,76 Дж/(моль×К).

Поскольку прочие поправки, обусловленные структурными особенностями строения молекул, для алканов отсутствуют, расчет закончен. Результаты его приведены в табл. 2.2.

Для этого соединения рекомендовано [1] значение энтропии 488,65 Дж/(моль×К). Ошибка расчета по методу Бенсона составляет, таким образом, 1,4 % отн.


К-во Просмотров: 856
Бесплатно скачать Реферат: Прогнозирование энтропии образования органических веществ